capsules_extra/tsl2561.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! SyscallDriver for the Taos TSL2561 light sensor.
//!
//! <http://www.digikey.com/product-detail/en/ams-taos-usa-inc/TSL2561FN/TSL2561-FNCT-ND/3095298>
//!
//! > The TSL2560 and TSL2561 are light-to-digital converters that transform
//! > light intensity to a digital signal output capable of direct I2C
//! > interface. Each device combines one broadband photodiode (visible plus
//! > infrared) and one infrared-responding photodiode on a single CMOS
//! > integrated circuit capable of providing a near-photopic response over an
//! > effective 20-bit dynamic range (16-bit resolution). Two integrating ADCs
//! > convert the photodiode currents to a digital output that represents the
//! > irradiance measured on each channel. This digital output can be input to a
//! > microprocessor where illuminance (ambient light level) in lux is derived
//! > using an empirical formula to approximate the human eye response.
use core::cell::Cell;
use kernel::grant::{AllowRoCount, AllowRwCount, Grant, UpcallCount};
use kernel::hil::gpio;
use kernel::hil::i2c;
use kernel::syscall::{CommandReturn, SyscallDriver};
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::{ErrorCode, ProcessId};
/// Syscall driver number.
use capsules_core::driver;
pub const DRIVER_NUM: usize = driver::NUM::Tsl2561 as usize;
// Buffer to use for I2C messages
pub const BUFFER_LENGTH: usize = 4;
/// Command register defines
const COMMAND_REG: u8 = 0x80;
const WORD_PROTOCOL: u8 = 0x20;
/// Control_Reg defines
const POWER_ON: u8 = 0x03;
const POWER_OFF: u8 = 0x00;
/// Timing_Reg defines
const INTEGRATE_TIME_101_MS: u8 = 0x01;
const LOW_GAIN_MODE: u8 = 0x00;
// Interrupt_Control_Reg defines
const INTERRUPT_CONTROL_LEVEL: u8 = 0x10;
const INTERRUPT_ON_ADC_DONE: u8 = 0x0;
// ADC counts to Lux value conversion copied from TSL2561 manual
// −−−−------------------------------
// Value scaling factors
// −−−−−−−−−−−−−−−-------------------
const LUX_SCALE: u16 = 14; // scale by 2^14
const RATIO_SCALE: u16 = 9; // scale ratio by 2^9
// −−−−−−−−−−−−−−−−−−−−−−−-----------
// Integration time scaling factors
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−------
const CH_SCALE: u16 = 10; // scale channel values by 2^10
#[allow(dead_code)]
const CHSCALE_TINT0: u16 = 0x7517; // 322/11 * 2^CH_SCALE
const CHSCALE_TINT1: u16 = 0x0fe7; // 322/81 * 2^CH_SCALE
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−------
// T, FN, and CL Package coefficients
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−------
// For Ch1/Ch0=0.00 to 0.50
// Lux/Ch0=0.0304−0.062*((Ch1/Ch0)^1.4)
// piecewise approximation
// For Ch1/Ch0=0.00 to 0.125:
// Lux/Ch0=0.0304−0.0272*(Ch1/Ch0)
//
// For Ch1/Ch0=0.125 to 0.250:
// Lux/Ch0=0.0325−0.0440*(Ch1/Ch0)
//
// For Ch1/Ch0=0.250 to 0.375:
// Lux/Ch0=0.0351−0.0544*(Ch1/Ch0)
//
// For Ch1/Ch0=0.375 to 0.50:
// Lux/Ch0=0.0381−0.0624*(Ch1/Ch0)
//
// For Ch1/Ch0=0.50 to 0.61:
// Lux/Ch0=0.0224−0.031*(Ch1/Ch0)
//
// For Ch1/Ch0=0.61 to 0.80:
// Lux/Ch0=0.0128−0.0153*(Ch1/Ch0)
//
// For Ch1/Ch0=0.80 to 1.30:
// Lux/Ch0=0.00146−0.00112*(Ch1/Ch0)
//
// For Ch1/Ch0>1.3:
// Lux/Ch0=0
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−------
const K1T: usize = 0x0040; // 0.125 * 2^RATIO_SCALE
const B1T: usize = 0x01f2; // 0.0304 * 2^LUX_SCALE
const M1T: usize = 0x01be; // 0.0272 * 2^LUX_SCALE
const K2T: usize = 0x0080; // 0.250 * 2^RATIO_SCALE
const B2T: usize = 0x0214; // 0.0325 * 2^LUX_SCALE
const M2T: usize = 0x02d1; // 0.0440 * 2^LUX_SCALE
const K3T: usize = 0x00c0; // 0.375 * 2^RATIO_SCALE
const B3T: usize = 0x023f; // 0.0351 * 2^LUX_SCALE
const M3T: usize = 0x037b; // 0.0544 * 2^LUX_SCALE
const K4T: usize = 0x0100; // 0.50 * 2^RATIO_SCALE
const B4T: usize = 0x0270; // 0.0381 * 2^LUX_SCALE
const M4T: usize = 0x03fe; // 0.0624 * 2^LUX_SCALE
const K5T: usize = 0x0138; // 0.61 * 2^RATIO_SCALE
const B5T: usize = 0x016f; // 0.0224 * 2^LUX_SCALE
const M5T: usize = 0x01fc; // 0.0310 * 2^LUX_SCALE
const K6T: usize = 0x019a; // 0.80 * 2^RATIO_SCALE
const B6T: usize = 0x00d2; // 0.0128 * 2^LUX_SCALE
const M6T: usize = 0x00fb; // 0.0153 * 2^LUX_SCALE
const K7T: usize = 0x029a; // 1.3 * 2^RATIO_SCALE
const B7T: usize = 0x0018; // 0.00146 * 2^LUX_SCALE
const M7T: usize = 0x0012; // 0.00112 * 2^LUX_SCALE
const K8T: usize = 0x029a; // 1.3 * 2^RATIO_SCALE
const B8T: usize = 0x0000; // 0.000 * 2^LUX_SCALE
const M8T: usize = 0x0000; // 0.000 * 2^LUX_SCALE
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−------
// CS package coefficients
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−------
// For 0 <= Ch1/Ch0 <= 0.52
// Lux/Ch0 = 0.0315−0.0593*((Ch1/Ch0)^1.4)
// piecewise approximation
// For 0 <= Ch1/Ch0 <= 0.13
// Lux/Ch0 = 0.0315−0.0262*(Ch1/Ch0)
// For 0.13 <= Ch1/Ch0 <= 0.26
// Lux/Ch0 = 0.0337−0.0430*(Ch1/Ch0)
// For 0.26 <= Ch1/Ch0 <= 0.39
// Lux/Ch0 = 0.0363−0.0529*(Ch1/Ch0)
// For 0.39 <= Ch1/Ch0 <= 0.52
// Lux/Ch0 = 0.0392−0.0605*(Ch1/Ch0)
// For 0.52 < Ch1/Ch0 <= 0.65
// Lux/Ch0 = 0.0229−0.0291*(Ch1/Ch0)
// For 0.65 < Ch1/Ch0 <= 0.80
// Lux/Ch0 = 0.00157−0.00180*(Ch1/Ch0)
// For 0.80 < Ch1/Ch0 <= 1.30
// Lux/Ch0 = 0.00338−0.00260*(Ch1/Ch0)
// For Ch1/Ch0 > 1.30
// Lux = 0
// −−−−−−−−−−−−−−−−−−−−−−−−−−−−------
// const K1C: usize = 0x0043; // 0.130 * 2^RATIO_SCALE
// const B1C: usize = 0x0204; // 0.0315 * 2^LUX_SCALE
// const M1C: usize = 0x01ad; // 0.0262 * 2^LUX_SCALE
// const K2C: usize = 0x0085; // 0.260 * 2^RATIO_SCALE
// const B2C: usize = 0x0228; // 0.0337 * 2^LUX_SCALE
// const M2C: usize = 0x02c1; // 0.0430 * 2^LUX_SCALE
// const K3C: usize = 0x00c8; // 0.390 * 2^RATIO_SCALE
// const B3C: usize = 0x0253; // 0.0363 * 2^LUX_SCALE
// const M3C: usize = 0x0363; // 0.0529 * 2^LUX_SCALE
// const K4C: usize = 0x010a; // 0.520 * 2^RATIO_SCALE
// const B4C: usize = 0x0282; // 0.0392 * 2^LUX_SCALE
// const M4C: usize = 0x03df; // 0.0605 * 2^LUX_SCALE
// const K5C: usize = 0x014d; // 0.65 * 2^RATIO_SCALE
// const B5C: usize = 0x0177; // 0.0229 * 2^LUX_SCALE
// const M5C: usize = 0x01dd; // 0.0291 * 2^LUX_SCALE
// const K6C: usize = 0x019a; // 0.80 * 2^RATIO_SCALE
// const B6C: usize = 0x0101; // 0.0157 * 2^LUX_SCALE
// const M6C: usize = 0x0127; // 0.0180 * 2^LUX_SCALE
// const K7C: usize = 0x029a; // 1.3 * 2^RATIO_SCALE
// const B7C: usize = 0x0037; // 0.00338 * 2^LUX_SCALE
// const M7C: usize = 0x002b; // 0.00260 * 2^LUX_SCALE
// const K8C: usize = 0x029a; // 1.3 * 2^RATIO_SCALE
// const B8C: usize = 0x0000; // 0.000 * 2^LUX_SCALE
// const M8C: usize = 0x0000; // 0.000 * 2^LUX_SCALE
#[allow(dead_code)]
enum Registers {
Control = 0x00,
Timing = 0x01,
ThresholdLowLow = 0x02,
ThresholdLowHigh = 0x03,
ThresholdHighLow = 0x04,
ThresholdHighHigh = 0x05,
Interrupt = 0x06,
Id = 0x0a,
Data0Low = 0x0c,
Data0High = 0x0d,
Data1Low = 0x0e,
Data1High = 0x0f,
}
#[derive(Clone, Copy, PartialEq)]
enum State {
Idle,
/// Read the Id register.
SelectId,
ReadingId,
/// Process of taking a light measurement.
TakeMeasurementTurnOn,
TakeMeasurementConfigMeasurement,
TakeMeasurementReset1,
TakeMeasurementReset2,
/// Read the ADC registers.
ReadMeasurement1,
ReadMeasurement2,
ReadMeasurement3,
/// Calculate light and call the callback with the value.
GotMeasurement,
/// Disable I2C and release buffer
Done,
}
#[derive(Default)]
pub struct App {}
pub struct TSL2561<'a, I: i2c::I2CDevice> {
i2c: &'a I,
interrupt_pin: &'a dyn gpio::InterruptPin<'a>,
state: Cell<State>,
buffer: TakeCell<'static, [u8]>,
apps: Grant<App, UpcallCount<1>, AllowRoCount<0>, AllowRwCount<0>>,
owning_process: OptionalCell<ProcessId>,
}
impl<'a, I: i2c::I2CDevice> TSL2561<'a, I> {
pub fn new(
i2c: &'a I,
interrupt_pin: &'a dyn gpio::InterruptPin<'a>,
buffer: &'static mut [u8],
apps: Grant<App, UpcallCount<1>, AllowRoCount<0>, AllowRwCount<0>>,
) -> Self {
// setup and return struct
Self {
i2c,
interrupt_pin,
state: Cell::new(State::Idle),
buffer: TakeCell::new(buffer),
apps,
owning_process: OptionalCell::empty(),
}
}
pub fn read_id(&self) {
self.buffer.take().map(|buffer| {
// turn on i2c to send commands
self.i2c.enable();
buffer[0] = Registers::Id as u8 | COMMAND_REG;
// buffer[0] = Registers::Id as u8;
// TODO verify errors
let _ = self.i2c.write(buffer, 1);
self.state.set(State::SelectId);
});
}
pub fn take_measurement(&self) {
// Need pull up on interrupt pin
self.interrupt_pin.make_input();
self.interrupt_pin
.enable_interrupts(gpio::InterruptEdge::FallingEdge);
self.buffer.take().map(|buf| {
// Turn on i2c to send commands
self.i2c.enable();
buf[0] = Registers::Control as u8 | COMMAND_REG;
buf[1] = POWER_ON;
// TODO verify errors
let _ = self.i2c.write(buf, 2);
self.state.set(State::TakeMeasurementTurnOn);
});
}
fn calculate_lux(&self, chan0: u16, chan1: u16) -> usize {
// First, scale the channel values depending on the gain and integration
// time. 16X, 402mS is nominal. Scale if integration time is NOT 402 msec.
// let mut ch_scale = CHSCALE_TINT0 as usize; // 13.7ms
let mut ch_scale = CHSCALE_TINT1 as usize; // 101ms
// let mut ch_scale: usize = 1 << CH_SCALE; // Default
// Scale if gain is NOT 16X
ch_scale <<= 4; // scale 1X to 16X
// scale the channel values
let channel0 = (chan0 as usize * ch_scale) >> CH_SCALE;
let channel1 = (chan1 as usize * ch_scale) >> CH_SCALE;
// Find the ratio of the channel values (Channel1/Channel0).
// Protect against divide by zero.
let mut ratio1 = 0;
if channel0 != 0 {
ratio1 = (channel1 << (RATIO_SCALE + 1)) / channel0;
}
// round the ratio value
let ratio = (ratio1 + 1) >> 1;
// is ratio <= eachBreak ?
let mut b = 0;
let mut m = 0;
// T, FN, and CL package
if ratio <= K1T {
b = B1T;
m = M1T;
} else if ratio <= K2T {
b = B2T;
m = M2T;
} else if ratio <= K3T {
b = B3T;
m = M3T;
} else if ratio <= K4T {
b = B4T;
m = M4T;
} else if ratio <= K5T {
b = B5T;
m = M5T;
} else if ratio <= K6T {
b = B6T;
m = M6T;
} else if ratio <= K7T {
b = B7T;
m = M7T;
} else if ratio > K8T {
b = B8T;
m = M8T;
}
// CS package
// if ratio <= K1C {
// b=B1C; m=M1C;
// } else if ratio <= K2C {
// b=B2C; m=M2C;
// } else if ratio <= K3C {
// b=B3C; m=M3C;
// } else if ratio <= K4C {
// b=B4C; m=M4C;
// } else if ratio <= K5C {
// b=B5C; m=M5C;
// } else if ratio <= K6C {
// b=B6C; m=M6C;
// } else if ratio <= K7C {
// b=B7C; m=M7C;
// } else if ratio > K8C {
// b=B8C; m=M8C;
// }
// Calculate actual lux value
let mut val = ((channel0 * b) as isize) - ((channel1 * m) as isize);
// Do not allow negative lux value
if val < 0 {
val = 0;
}
// round lsb (2^(LUX_SCALE−1))
// val += (1 << (LUX_SCALE−1));
val += 1 << (LUX_SCALE - 1);
// strip off fractional portion and return lux
let lux = val >> LUX_SCALE;
lux as usize
}
}
impl<I: i2c::I2CDevice> i2c::I2CClient for TSL2561<'_, I> {
fn command_complete(&self, buffer: &'static mut [u8], _status: Result<(), i2c::Error>) {
match self.state.get() {
State::SelectId => {
// TODO verify errors
let _ = self.i2c.read(buffer, 1);
self.state.set(State::ReadingId);
}
State::ReadingId => {
self.buffer.replace(buffer);
self.i2c.disable();
self.state.set(State::Idle);
}
State::TakeMeasurementTurnOn => {
buffer[0] = Registers::Timing as u8 | COMMAND_REG;
buffer[1] = INTEGRATE_TIME_101_MS | LOW_GAIN_MODE;
// TODO verify errors
let _ = self.i2c.write(buffer, 2);
self.state.set(State::TakeMeasurementConfigMeasurement);
}
State::TakeMeasurementConfigMeasurement => {
buffer[0] = Registers::Interrupt as u8 | COMMAND_REG;
buffer[1] = INTERRUPT_CONTROL_LEVEL | INTERRUPT_ON_ADC_DONE;
// TODO verify errors
let _ = self.i2c.write(buffer, 2);
self.state.set(State::TakeMeasurementReset1);
}
State::TakeMeasurementReset1 => {
buffer[0] = Registers::Control as u8 | COMMAND_REG;
buffer[1] = POWER_OFF;
// TODO verify errors
let _ = self.i2c.write(buffer, 2);
self.state.set(State::TakeMeasurementReset2);
}
State::TakeMeasurementReset2 => {
buffer[0] = Registers::Control as u8 | COMMAND_REG;
buffer[1] = POWER_ON;
// TODO verify errors
let _ = self.i2c.write(buffer, 2);
self.state.set(State::Done);
}
State::ReadMeasurement1 => {
// TODO verify errors
let _ = self.i2c.read(buffer, 2);
self.state.set(State::ReadMeasurement2);
}
State::ReadMeasurement2 => {
// Store the previous readings in the buffer where they
// won't get overwritten.
buffer[2] = buffer[0];
buffer[3] = buffer[1];
buffer[0] = Registers::Data0Low as u8 | COMMAND_REG | WORD_PROTOCOL;
// TODO verify errors
let _ = self.i2c.write(buffer, 2);
self.state.set(State::ReadMeasurement3);
}
State::ReadMeasurement3 => {
// TODO verify errors
let _ = self.i2c.read(buffer, 2);
self.state.set(State::GotMeasurement);
}
State::GotMeasurement => {
let chan0 = ((buffer[1] as u16) << 8) | (buffer[0] as u16);
let chan1 = ((buffer[3] as u16) << 8) | (buffer[2] as u16);
let lux = self.calculate_lux(chan0, chan1);
self.owning_process.map(|pid| {
let _ = self.apps.enter(pid, |_, upcalls| {
upcalls.schedule_upcall(0, (0, lux, 0)).ok();
});
});
buffer[0] = Registers::Control as u8 | COMMAND_REG;
buffer[1] = POWER_OFF;
// TODO verify errors
let _ = self.i2c.write(buffer, 2);
self.interrupt_pin.disable_interrupts();
self.state.set(State::Done);
}
State::Done => {
self.buffer.replace(buffer);
self.i2c.disable();
self.state.set(State::Idle);
}
_ => {}
}
}
}
impl<I: i2c::I2CDevice> gpio::Client for TSL2561<'_, I> {
fn fired(&self) {
self.buffer.take().map(|buffer| {
// turn on i2c to send commands
self.i2c.enable();
// Read the first of the ADC registers.
buffer[0] = Registers::Data1Low as u8 | COMMAND_REG | WORD_PROTOCOL;
// TODO verify errors
let _ = self.i2c.write(buffer, 1);
self.state.set(State::ReadMeasurement1);
});
}
}
impl<I: i2c::I2CDevice> SyscallDriver for TSL2561<'_, I> {
fn command(
&self,
command_num: usize,
_: usize,
_: usize,
process_id: ProcessId,
) -> CommandReturn {
if command_num == 0 {
// Handle this first as it should be returned
// unconditionally
return CommandReturn::success();
}
// Check if this non-virtualized driver is already in use by
// some (alive) process
let match_or_empty_or_nonexistant = self.owning_process.map_or(true, |current_process| {
self.apps
.enter(current_process, |_, _| current_process == process_id)
.unwrap_or(true)
});
if match_or_empty_or_nonexistant {
self.owning_process.set(process_id);
} else {
return CommandReturn::failure(ErrorCode::NOMEM);
}
match command_num {
// Take a measurement
1 => {
self.take_measurement();
CommandReturn::success()
}
// default
_ => CommandReturn::failure(ErrorCode::NOSUPPORT),
}
}
fn allocate_grant(&self, processid: ProcessId) -> Result<(), kernel::process::Error> {
self.apps.enter(processid, |_, _| {})
}
}