rp2040/
pwm.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! Pulse wave modulation (PWM) driver for RP2040.
//!
//! # Hardware Interface Layer (HIL)
//!
//! The driver implements both Pwm and PwmPin HILs. The following features are available when using
//! the driver through HIL:
//!
//! + Configurable top and compare values
//! + Independent configuration for each channel and for each output/input pin
//! + Duty cycle from 0% to 100% **inclusive**
//!
//! # Examples
//!
//! The integration tests for Raspberry Pi Pico provide some examples using the driver.
//! See boards/raspberry_pi_pico/src/test/pwm.rs

use kernel::debug;
use kernel::hil;
use kernel::utilities::cells::OptionalCell;
use kernel::utilities::registers::interfaces::{ReadWriteable, Readable, Writeable};
use kernel::utilities::registers::{
    register_bitfields, register_structs, ReadOnly, ReadWrite, WriteOnly,
};
use kernel::utilities::StaticRef;
use kernel::ErrorCode;

use crate::clocks;
use crate::gpio::RPGpio;

register_bitfields![u32,
    CSR [
        // Enable PWM channel
        EN OFFSET(0) NUMBITS(1) [],
        // Enable phase-correct modulation
        PH_CORRECT OFFSET(1) NUMBITS(1) [],
        // Invert output A
        A_INV OFFSET(2) NUMBITS(1) [],
        // Invert output B
        B_INV OFFSET(3) NUMBITS(1) [],
        // PWM slice event selection for fractional clock divider
        // Default value = FREE_RUNNING (always on)
        // If the event is different from FREE_RUNNING, then pin B becomes
        // an input pin
        DIVMOD OFFSET(4) NUMBITS(2) [
            // Free-running counting at rate dictated by fractional divider
            FREE_RUNNING = 0,
            // Fractional divider operation is gated by the PWM B pin
            B_HIGH = 1,
            // Counter advances with each rising edge of the PWM B pin
            B_RISING = 2,
            // Counter advances with each falling edge of the PWM B pin
            B_FALLING = 3
        ],
        // Retard the phase of the counter by 1 count, while it is running
        // Self-clearing. Write a 1, and poll until low. Counter must be running.
        PH_RET OFFSET(6) NUMBITS(1) [],
        // Advance the phase of the counter by 1 count, while it is running
        // Self clearing. Write a 1, and poll until low. Counter must be running.
        PH_ADV OFFSET(7) NUMBITS(1) []
    ],

    // DIV register
    // INT and FRAC form a fixed-point fractional number.
    // Counting rate is system clock frequency divided by this number.
    // Fractional division uses simple 1st-order sigma-delta.
    DIV [
        FRAC OFFSET(0) NUMBITS(4) [],
        INT OFFSET(4) NUMBITS(8) []
    ],

    // Direct access to the PWM counter
    CTR [
        CTR OFFSET(0) NUMBITS(16) []
    ],

    // Counter compare values
    CC [
        A OFFSET(0) NUMBITS(16) [],
        B OFFSET(16) NUMBITS(16) []
    ],

    // Counter top value
    // When the value of the counter reaches the top value, depending on the
    // ph_correct value, the counter will either:
    // + wrap to 0 if ph_correct == 0
    // + it starts counting downward until it reaches 0 again if ph_correct == 0
    TOP [
        TOP OFFSET(0) NUMBITS(16) []
    ],

    // Control multiple channels at once.
    // Each bit controls one channel.
    CH [
        CH OFFSET(0) NUMBITS(8) [
            CH0 = 1,
            CH1 = 2,
            CH2 = 4,
            CH3 = 8,
            CH4 = 16,
            CH5 = 32,
            CH6 = 64,
            CH7 = 128
        ]
    ]
];

const NUMBER_CHANNELS: usize = 8;

#[repr(C)]
struct Channel {
    // Control and status register
    csr: ReadWrite<u32, CSR::Register>,
    // Division register
    div: ReadWrite<u32, DIV::Register>,
    // Direct access to the PWM counter register
    ctr: ReadWrite<u32, CTR::Register>,
    // Counter compare values register
    cc: ReadWrite<u32, CC::Register>,
    // Counter wrap value register
    top: ReadWrite<u32, TOP::Register>,
}

register_structs! {
    PwmRegisters {
        // Channel registers
        (0x0000 => ch: [Channel; NUMBER_CHANNELS]),
        // Enable register
        // This register aliases the CSR_EN bits for all channels.
        // Writing to this register allows multiple channels to be enabled or disabled
        // or disables simultaneously, so they can run in perfect sync.
        (0x00A0 => en: ReadWrite<u32, CH::Register>),
        // Raw interrupts register
        (0x00A4 => intr: WriteOnly<u32, CH::Register>),
        // Interrupt enable register
        (0x00A8 => inte: ReadWrite<u32, CH::Register>),
        // Interrupt force register
        (0x00AC => intf: ReadWrite<u32, CH::Register>),
        // Interrupt status after masking & forcing
        (0x00B0 => ints: ReadOnly<u32, CH::Register>),
        (0x00B4 => @END),
    }
}

#[derive(Clone, Copy)]
/// Fractional clock divider running mode
///
/// Each channel can be configured to run in four different ways:
///
/// + Free running: The fractional clock divider is always enabled. In this mode,
/// pins A and B are configured as output pins. In other modes, pin B becomes
/// an input pin.
/// + High: The fractional clock divider is enabled when pin B is high.
/// + Rising: The fractional clock divider is enabled when a rising-edge is
/// detected on pin B.
/// + Falling: The fractional clock divider is enabled when a falling-edge
/// is detected on pin B.
pub enum DivMode {
    FreeRunning,
    High,
    Rising,
    Falling,
}

/// Channel identifier
///
/// There are a total of 8 eight PWM channels.
#[derive(Clone, Copy, PartialEq, Debug)]
pub enum ChannelNumber {
    Ch0,
    Ch1,
    Ch2,
    Ch3,
    Ch4,
    Ch5,
    Ch6,
    Ch7,
}

const CHANNEL_NUMBERS: [ChannelNumber; NUMBER_CHANNELS] = [
    ChannelNumber::Ch0,
    ChannelNumber::Ch1,
    ChannelNumber::Ch2,
    ChannelNumber::Ch3,
    ChannelNumber::Ch4,
    ChannelNumber::Ch5,
    ChannelNumber::Ch6,
    ChannelNumber::Ch7,
];

/// Each GPIO pin can be configured as a PWM pin.
/// The following table shows the mapping between GPIO pins and PWM pins:
///
/// | GPIO  | PWM |
/// | ----- | --- |
/// | 0     | 0A  |
/// | 1     | 0B  |
/// | 2     | 1A  |
/// | 3     | 1B  |
/// | 4     | 2A  |
/// | 5     | 2B  |
/// | 6     | 3A  |
/// | 7     | 3B  |
/// | 8     | 4A  |
/// | 9     | 4B  |
/// | 10    | 5A  |
/// | 11    | 5B  |
/// | 12    | 6A  |
/// | 13    | 6B  |
/// | 14    | 7A  |
/// | 15    | 7B  |
/// | 16    | 0A  |
/// | 17    | 0B  |
/// | 18    | 1A  |
/// | 19    | 1B  |
/// | 20    | 2A  |
/// | 21    | 2B  |
/// | 22    | 3A  |
/// | 23    | 3B  |
/// | 24    | 4A  |
/// | 25    | 4B  |
/// | 26    | 5A  |
/// | 27    | 5B  |
/// | 28    | 6A  |
/// | 29    | 6B  |
///
/// **Note**:
///
/// + The same PWM output can be selected on two GPIO pins. The same signal will appear on each
/// GPIO.
/// + If a PWM B pin is used as an input, and is selected on multiple GPIO pins, then the PWM
/// channel will see the logical OR of those two GPIO inputs
impl From<RPGpio> for ChannelNumber {
    fn from(gpio: RPGpio) -> Self {
        match gpio as u8 >> 1 & 0b111 {
            // Because of the bitwise AND, there are only eight possible values
            0 => ChannelNumber::Ch0,
            1 => ChannelNumber::Ch1,
            2 => ChannelNumber::Ch2,
            3 => ChannelNumber::Ch3,
            4 => ChannelNumber::Ch4,
            5 => ChannelNumber::Ch5,
            6 => ChannelNumber::Ch6,
            _ => ChannelNumber::Ch7,
        }
    }
}

/// Identifier for a channel pin
///
/// Each PWM channel has two pins: A and B.
/// Pin A is always configured as an output pin.
/// Pin B is configured as an output pin when running in free running mode. Otherwise, it is
/// configured as an input pin.
#[derive(Clone, Copy, PartialEq, Debug)]
pub enum ChannelPin {
    A,
    B,
}

/// Check ChannelNumber implementation for more details
impl From<RPGpio> for ChannelPin {
    fn from(gpio: RPGpio) -> Self {
        match gpio as u8 & 0b0000_0001 {
            // Because of the bitwise AND, there are only two possible values
            0 => ChannelPin::A,
            _ => ChannelPin::B,
        }
    }
}

// PWM channel configuration structure
//
// This helper struct allows multiple channels to share the same configuration.
struct PwmChannelConfiguration {
    en: bool,
    ph_correct: bool,
    a_inv: bool,
    b_inv: bool,
    divmode: DivMode,
    int: u8,
    frac: u8,
    cc_a: u16,
    cc_b: u16,
    top: u16,
}

impl Default for PwmChannelConfiguration {
    // Create a set of default values to use for configuring a PWM channel:
    // + the channel is disabled
    // + trailing-edge modulation configured
    // + no pin A and B polarity inversion
    // + free running mode for the fractional clock divider
    // + integral part of the divider is 1 and the fractional part is 0
    // + compare values for both pins are set 0 (0% duty cycle)
    // + top value is set to its maximum value
    fn default() -> Self {
        PwmChannelConfiguration {
            en: false,
            ph_correct: false,
            a_inv: false,
            b_inv: false,
            divmode: DivMode::FreeRunning,
            int: 1,
            frac: 0,
            cc_a: 0,
            cc_b: 0,
            top: u16::MAX,
        }
    }
}

const PWM_BASE: StaticRef<PwmRegisters> =
    unsafe { StaticRef::new(0x40050000 as *const PwmRegisters) };

/// Main struct for controlling PWM peripheral
pub struct Pwm<'a> {
    registers: StaticRef<PwmRegisters>,
    clocks: OptionalCell<&'a clocks::Clocks>,
}

impl<'a> Pwm<'a> {
    /// Create a new Pwm struct
    ///
    /// **Note**:
    /// + This method must be called only once when setting up the kernel peripherals.
    /// + This peripheral depends on the chip's clocks.
    /// + Also, if interrupts are required, then an interrupt handler must be set. Otherwise, all
    /// the interrupts will be ignored.
    pub fn new() -> Self {
        let pwm = Self {
            registers: PWM_BASE,
            clocks: OptionalCell::empty(),
        };
        pwm.init();
        pwm
    }

    // Enable or disable the given PWM channel
    //
    // enable == false ==> disable channel
    // enable == true ==> enable channel
    fn set_enabled(&self, channel_number: ChannelNumber, enable: bool) {
        self.registers.ch[channel_number as usize]
            .csr
            .modify(match enable {
                true => CSR::EN::SET,
                false => CSR::EN::CLEAR,
            });
    }

    // Set phase correct (dual slope) modulation for the givem PWM channel
    //
    // ph_correct == false ==> trailing-edge modulation
    // ph_correct == true ==> phase-correct modulation
    fn set_ph_correct(&self, channel_number: ChannelNumber, ph_correct: bool) {
        self.registers.ch[channel_number as usize]
            .csr
            .modify(match ph_correct {
                true => CSR::PH_CORRECT::SET,
                false => CSR::PH_CORRECT::CLEAR,
            });
    }

    // Invert polarity for pin A
    // a_inv == true ==> invert polarity for pin A
    fn set_invert_polarity_a(&self, channel_number: ChannelNumber, inv: bool) {
        self.registers.ch[channel_number as usize]
            .csr
            .modify(match inv {
                true => CSR::A_INV::SET,
                false => CSR::A_INV::CLEAR,
            });
    }

    // Invert polarity for pin B
    // b_inv == true ==> invert polarity for pin B
    fn set_invert_polarity_b(&self, channel_number: ChannelNumber, inv: bool) {
        self.registers.ch[channel_number as usize]
            .csr
            .modify(match inv {
                true => CSR::B_INV::SET,
                false => CSR::B_INV::CLEAR,
            });
    }

    // Invert polarity for both pins
    fn set_invert_polarity(&self, channel_number: ChannelNumber, a_inv: bool, b_inv: bool) {
        self.set_invert_polarity_a(channel_number, a_inv);
        self.set_invert_polarity_b(channel_number, b_inv);
    }

    // Set running mode for the givel channel
    //
    // divmode == FreeRunning ==> always enable clock divider
    // divmode == High ==> enable clock divider when pin B is high
    // divmode == Rising ==> enable clock divider when pin B is rising
    // divmode == Falling ==> enable clock divider when pin B is falling
    fn set_div_mode(&self, channel_number: ChannelNumber, div_mode: DivMode) {
        self.registers.ch[channel_number as usize]
            .csr
            .modify(match div_mode {
                DivMode::FreeRunning => CSR::DIVMOD::FREE_RUNNING,
                DivMode::High => CSR::DIVMOD::B_HIGH,
                DivMode::Rising => CSR::DIVMOD::B_RISING,
                DivMode::Falling => CSR::DIVMOD::B_FALLING,
            });
    }

    // Set integral and fractional part of the clock divider
    // RP 2040 uses a 8.4 fractional clock divider.
    // The minimum value of the divider is   1 (int) +  0 / 16 (frac).
    // The maximum value of the divider is 255 (int) + 15 / 16 (frac).
    //
    // **Note**: this method will do nothing if int == 0 || frac > 15.
    fn set_divider_int_frac(&self, channel_number: ChannelNumber, int: u8, frac: u8) {
        if int == 0 || frac > 15 {
            return;
        }
        self.registers.ch[channel_number as usize]
            .div
            .modify(DIV::INT.val(int as u32));
        self.registers.ch[channel_number as usize]
            .div
            .modify(DIV::FRAC.val(frac as u32));
    }

    // Set output pin A compare value
    // If counter value < compare value A ==> pin A high
    fn set_compare_value_a(&self, channel_number: ChannelNumber, cc_a: u16) {
        self.registers.ch[channel_number as usize]
            .cc
            .modify(CC::A.val(cc_a as u32));
    }

    // Set output pin B compare value
    // If counter value < compare value B ==> pin B high (if divmode == FreeRunning)
    fn set_compare_value_b(&self, channel_number: ChannelNumber, cc_b: u16) {
        self.registers.ch[channel_number as usize]
            .cc
            .modify(CC::B.val(cc_b as u32));
    }

    // Set compare values for both pins
    fn set_compare_values_a_and_b(&self, channel_number: ChannelNumber, cc_a: u16, cc_b: u16) {
        self.set_compare_value_a(channel_number, cc_a);
        self.set_compare_value_b(channel_number, cc_b);
    }

    // Set counter top value
    fn set_top(&self, channel_number: ChannelNumber, top: u16) {
        self.registers.ch[channel_number as usize]
            .top
            .modify(TOP::TOP.val(top as u32));
    }

    // Get the current value of the counter
    fn get_counter(&self, channel_number: ChannelNumber) -> u16 {
        self.registers.ch[channel_number as usize]
            .ctr
            .read(CTR::CTR) as u16
    }

    // Set the value of the counter
    fn set_counter(&self, channel_number: ChannelNumber, value: u16) {
        self.registers.ch[channel_number as usize]
            .ctr
            .modify(CTR::CTR.val(value as u32));
    }

    fn wait_for(count: usize, f: impl Fn() -> bool) -> bool {
        for _ in 0..count {
            if f() {
                return true;
            }
        }

        false
    }

    // Increments the value of the counter
    //
    // The counter must be running at less than full speed. The method will return
    // once the increment is complete.
    fn advance_count(&self, channel_number: ChannelNumber) -> bool {
        self.registers.ch[channel_number as usize]
            .csr
            .modify(CSR::PH_ADV::SET);
        Self::wait_for(100, || {
            self.registers.ch[channel_number as usize]
                .csr
                .read(CSR::PH_ADV)
                == 0
        })
    }

    // Retards the phase of the counter by 1 count
    //
    // The counter must be running. The method will return once the retardation
    // is complete.
    fn retard_count(&self, channel_number: ChannelNumber) -> bool {
        self.registers.ch[channel_number as usize]
            .csr
            .modify(CSR::PH_RET::SET);
        Self::wait_for(100, || {
            self.registers.ch[channel_number as usize]
                .csr
                .read(CSR::PH_RET)
                == 0
        })
    }

    // Enable interrupt on the given PWM channel
    fn enable_interrupt(&self, channel_number: ChannelNumber) {
        // What about adding a new method to the register interface which performs
        // a bitwise OR and another one for AND?
        let mask = self.registers.inte.read(CH::CH);
        self.registers
            .inte
            .modify(CH::CH.val(mask | 1 << channel_number as u32));
    }

    // Disable interrupt on the given PWM channel
    fn disable_interrupt(&self, channel_number: ChannelNumber) {
        let mask = self.registers.inte.read(CH::CH);
        self.registers
            .inte
            .modify(CH::CH.val(mask & !(1 << channel_number as u32)));
    }

    // Enable multiple channel interrupts at once.
    //
    // Bits 0 to 7 ==> enable channel 0-7 interrupts.
    fn enable_mask_interrupt(&self, mask: u8) {
        let old_mask = self.registers.inte.read(CH::CH);
        self.registers
            .inte
            .modify(CH::CH.val(old_mask | mask as u32));
    }

    // Disable multiple channel interrupts at once.
    //
    // Bits 0 to 7 ==> disable channel 0-7 interrupts.
    fn disable_mask_interrupt(&self, mask: u8) {
        let old_mask = self.registers.inte.read(CH::CH);
        self.registers
            .inte
            .modify(CH::CH.val(old_mask & !mask as u32));
    }

    // Clear interrupt flag
    fn clear_interrupt(&self, channel_number: ChannelNumber) {
        self.registers
            .intr
            .write(CH::CH.val(1 << channel_number as u32));
    }

    // Force interrupt on the given channel
    fn force_interrupt(&self, channel_number: ChannelNumber) {
        let mask = self.registers.intf.read(CH::CH);
        self.registers
            .intf
            .modify(CH::CH.val(mask | 1 << channel_number as u32));
    }

    // Unforce interrupt
    fn unforce_interrupt(&self, channel_number: ChannelNumber) {
        let mask = self.registers.intf.read(CH::CH);
        self.registers
            .intf
            .modify(CH::CH.val(mask & !(1 << channel_number as u32)));
    }

    // Get interrupt status
    fn get_interrupt_status(&self, channel_number: ChannelNumber) -> bool {
        (self.registers.ints.read(CH::CH) & 1 << channel_number as u32) != 0
    }

    // Configure the given channel using the given configuration
    fn configure_channel(&self, channel_number: ChannelNumber, config: &PwmChannelConfiguration) {
        self.set_ph_correct(channel_number, config.ph_correct);
        self.set_invert_polarity(channel_number, config.a_inv, config.b_inv);
        self.set_div_mode(channel_number, config.divmode);
        self.set_divider_int_frac(channel_number, config.int, config.frac);
        self.set_compare_value_a(channel_number, config.cc_a);
        self.set_compare_value_b(channel_number, config.cc_b);
        self.set_top(channel_number, config.top);
        self.set_enabled(channel_number, config.en);
    }

    // Initialize the struct
    fn init(&self) {
        let default_config: PwmChannelConfiguration = PwmChannelConfiguration::default();
        for channel_number in CHANNEL_NUMBERS {
            self.configure_channel(channel_number, &default_config);
            self.set_counter(channel_number, 0);
            self.disable_interrupt(channel_number);
        }
        self.registers.intr.write(CH::CH.val(0));
    }

    // This method should be called when resolving dependencies for the
    // default peripherals. See [crate::chip::Rp2040DefaultPeripherals::resolve_dependencies]
    pub(crate) fn set_clocks(&self, clocks: &'a clocks::Clocks) {
        self.clocks.set(clocks);
    }

    // Given a channel number and a channel pin, return a struct that allows controlling it
    fn new_pwm_pin(&'a self, channel_number: ChannelNumber, channel_pin: ChannelPin) -> PwmPin<'a> {
        PwmPin {
            pwm_struct: self,
            channel_number,
            channel_pin,
        }
    }

    // Map the given GPIO to a PWM channel and a PWM pin
    fn gpio_to_pwm(&self, gpio: RPGpio) -> (ChannelNumber, ChannelPin) {
        (ChannelNumber::from(gpio), ChannelPin::from(gpio))
    }

    /// Map the GPIO to a PwmPin struct
    ///
    /// The returned structure can be used to control the PWM pin.
    ///
    /// See [PwmPin]
    pub fn gpio_to_pwm_pin(&'a self, gpio: RPGpio) -> PwmPin<'a> {
        let (channel_number, channel_pin) = self.gpio_to_pwm(gpio);
        self.new_pwm_pin(channel_number, channel_pin)
    }

    // Helper function to compute top, int and frac values
    // selected_freq_hz ==> user's desired frequency
    //
    // Return value: Ok(top, int, frac) in case of no error, otherwise Err(())
    fn compute_top_int_frac(&self, selected_freq_hz: usize) -> Result<(u16, u8, u8), ()> {
        let max_freq_hz = hil::pwm::Pwm::get_maximum_frequency_hz(self);
        let threshold_freq_hz = max_freq_hz / hil::pwm::Pwm::get_maximum_duty_cycle(self);
        // If the desired frequency doesn't make sense, return directly an error
        if selected_freq_hz > max_freq_hz || selected_freq_hz == 0 {
            return Err(());
        }

        // If the selected frequency is high enough, then there is no need for a divider
        if selected_freq_hz > threshold_freq_hz {
            return Ok(((max_freq_hz / selected_freq_hz - 1) as u16, 1, 0));
        }
        // If the selected frequency is below the threshold frequency, then a divider is necessary

        // Set top to max
        let top = u16::MAX;
        // Get the corresponding integral part of the divider
        let int = threshold_freq_hz / selected_freq_hz;
        // If the desired frequency is too low, then it can't be achieved using the divider.
        // In this case, notify the caller with an error.
        if int >= 256 {
            return Err(());
        }
        // Now that the integral part is valid, the fractional part can be computed as well.
        // The fractional part is on 4 bits.
        let frac = ((threshold_freq_hz << 4) / selected_freq_hz - (int << 4)) as u8;

        // Return the final result
        // Since int < 256, the cast will not truncate the value.
        Ok((top, int as u8, frac))
    }

    // Starts a PWM pin with the given frequency and duty cycle.
    //
    // Note: the actual values may vary due to rounding errors.
    fn start_pwm_pin(
        &self,
        channel_number: ChannelNumber,
        channel_pin: ChannelPin,
        frequency_hz: usize,
        duty_cycle: usize,
    ) -> Result<(), ErrorCode> {
        let (top, int, frac) = match self.compute_top_int_frac(frequency_hz) {
            Ok(result) => result,
            Err(()) => return Result::from(ErrorCode::INVAL),
        };

        let max_duty_cycle = hil::pwm::Pwm::get_maximum_duty_cycle(self);
        // Return an error if the selected duty cycle is higher than the maximum value
        if duty_cycle > max_duty_cycle {
            return Err(ErrorCode::INVAL);
        }
        // If top value is equal to u16::MAX, then it is impossible to
        // have a 100% duty cycle, so an error will be returned.
        let compare_value = if duty_cycle == max_duty_cycle {
            if top == u16::MAX {
                return Result::from(ErrorCode::INVAL);
            } else {
                // counter compare value for 100% glitch-free duty cycle
                top + 1
            }
        } else {
            // Normally, no overflow should occur if duty_cycle is less than or
            // equal to get_maximum_duty_cycle(). It is in user's responsability to
            // ensure the value is valid.
            ((top as usize + 1) * duty_cycle / max_duty_cycle) as u16
        };

        // Configure the channel accordingly
        self.set_top(channel_number, top);
        self.set_divider_int_frac(channel_number, int, frac);
        // Configure the pin accordingly
        if channel_pin == ChannelPin::A {
            self.set_compare_value_a(channel_number, compare_value);
        } else {
            self.set_compare_value_b(channel_number, compare_value);
        };
        // Finally, enable the channel
        self.set_enabled(channel_number, true);
        Ok(())
    }

    // Stop a PWM channel.
    //
    // This method does nothing if the PWM channel was already disabled.
    //
    // Note that disabling a PWM channel may result in disabling multiple PWM pins.
    fn stop_pwm_channel(&self, channel_number: ChannelNumber) -> Result<(), ErrorCode> {
        self.set_enabled(channel_number, false);
        Ok(())
    }
}

/// Implementation of the Hardware Interface Layer (HIL)
impl hil::pwm::Pwm for Pwm<'_> {
    type Pin = RPGpio;

    /// Start a PWM pin
    ///
    /// Start the given PWM pin with the given frequency and the given duty cycle.
    /// The actual values may vary due to rounding errors. For high precision duty cycles,
    /// the frequency should be set less than:
    ///
    /// ```rust,ignore
    /// let threshold_freq = pwm_struct.get_maximum_frequency_hz() / pwm_struct.get_maximum_duty_cycle()
    /// ```
    ///
    /// ## Errors
    ///
    /// This method may fail in one of the following situations:
    ///
    /// + selected frequency and duty cycle higher than the maximum possible values
    /// + 100% duty cycle demand for low frequencies (close to or below threshold_freq)
    /// + very low frequencies
    ///
    /// ## Safety
    ///
    /// It is safe to call multiples times this method with different values while the pin is
    /// running.
    ///
    /// **Note**: the pin must be set as a PWM pin prior to calling this method.
    fn start(
        &self,
        pin: &Self::Pin,
        frequency_hz: usize,
        duty_cycle: usize,
    ) -> Result<(), ErrorCode> {
        let (channel_number, channel_pin) = self.gpio_to_pwm(*pin);
        self.start_pwm_pin(channel_number, channel_pin, frequency_hz, duty_cycle)
    }

    /// Stop the given pin
    ///
    /// ## Errors
    ///
    /// This method may never fail.
    ///
    /// ## Safety
    ///
    /// It is safe to call this method multiple times on the same pin. If the pin is already
    /// stopped, then it does nothing.
    fn stop(&self, pin: &Self::Pin) -> Result<(), ErrorCode> {
        let (channel_number, _) = self.gpio_to_pwm(*pin);
        self.stop_pwm_channel(channel_number)
    }

    /// Return the maximum value of the frequency in Hz
    ///
    /// ## Panics
    ///
    /// This method will panic if the dependencies are not resolved.
    fn get_maximum_frequency_hz(&self) -> usize {
        self.clocks
            .unwrap_or_panic()
            .get_frequency(clocks::Clock::System) as usize
    }

    /// Return an opaque value representing 100% duty cycle
    fn get_maximum_duty_cycle(&self) -> usize {
        u16::MAX as usize + 1
    }
}

/// Helper structure to control a PWM pin
pub struct PwmPin<'a> {
    pwm_struct: &'a Pwm<'a>,
    channel_number: ChannelNumber,
    channel_pin: ChannelPin,
}

impl PwmPin<'_> {
    /// Returns the PWM channel the pin belongs to
    pub fn get_channel_number(&self) -> ChannelNumber {
        self.channel_number
    }

    /// Returns the PWM pin the pin belongs to
    pub fn get_channel_pin(&self) -> ChannelPin {
        self.channel_pin
    }

    // See [Pwm::set_invert_polarity_a] and [Pwm::set_invert_polarity_b]
    fn set_invert_polarity(&self, inv: bool) {
        if self.channel_pin == ChannelPin::A {
            self.pwm_struct
                .set_invert_polarity_a(self.channel_number, inv);
        } else {
            self.pwm_struct
                .set_invert_polarity_b(self.channel_number, inv);
        }
    }

    // See [Pwm::set_compare_value_a] and [Pwm::set_compare_value_b]
    fn set_compare_value(&self, compare_value: u16) {
        if self.channel_pin == ChannelPin::A {
            self.pwm_struct
                .set_compare_value_a(self.channel_number, compare_value);
        } else {
            self.pwm_struct
                .set_compare_value_b(self.channel_number, compare_value);
        }
    }
}

impl hil::pwm::PwmPin for PwmPin<'_> {
    /// Same as Pwm::start
    fn start(&self, frequency_hz: usize, duty_cycle: usize) -> Result<(), ErrorCode> {
        self.pwm_struct.start_pwm_pin(
            self.channel_number,
            self.channel_pin,
            frequency_hz,
            duty_cycle,
        )
    }

    /// Same as Pwm::stop
    fn stop(&self) -> Result<(), ErrorCode> {
        self.pwm_struct.stop_pwm_channel(self.channel_number)
    }

    /// Same as Pwm::get_maximum_frequency_hz
    fn get_maximum_frequency_hz(&self) -> usize {
        hil::pwm::Pwm::get_maximum_frequency_hz(self.pwm_struct)
    }

    /// Same as Pwm::get_maximum_duty_cycle
    fn get_maximum_duty_cycle(&self) -> usize {
        hil::pwm::Pwm::get_maximum_duty_cycle(self.pwm_struct)
    }
}

/// Unit tests
///
/// This module provides unit tests for the PWM driver.
///
/// To run the tests, add the following line before loading processes:
///
/// ```rust,ignore
/// rp2040::pwm::unit_tests::run::(&peripherals.pwm);
/// ```
///
/// Compile and flash the kernel on the board. Then, connect to UART on GPIOs 1 and 2.
/// If everything goes right, the following output should be displayed:
///
/// ```txt
/// Testing ChannelNumber enum...
/// ChannelNumber enum OK
/// Testing ChannelPin enum...
/// ChannelPin enum OK
/// Testing PWM struct...
/// Starting testing channel 1...
/// Channel 1 works!
/// Starting testing channel 2...
/// Channel 2 works!
/// Starting testing channel 3...
/// Channel 3 works!
/// Starting testing channel 4...
/// Channel 4 works!
/// Starting testing channel 5...
/// Channel 5 works!
/// Starting testing channel 6...
/// Channel 6 works!
/// Starting testing channel 7...
/// Channel 7 works!
/// PWM struct OK
/// Testing PwmPinStruct...
/// PwmPin struct OK
/// Testing PWM HIL trait...
/// PWM HIL trait OK
/// ```

pub mod unit_tests {
    use super::{
        debug, hil, ChannelNumber, ChannelPin, DivMode, Pwm, RPGpio, Readable, CC, CH, CSR, CTR,
        DIV, TOP,
    };

    fn test_channel_number() {
        debug!("Testing ChannelNumber enum...");
        assert_eq!(ChannelNumber::from(RPGpio::GPIO0), ChannelNumber::Ch0);
        assert_eq!(ChannelNumber::from(RPGpio::GPIO3), ChannelNumber::Ch1);
        assert_eq!(ChannelNumber::from(RPGpio::GPIO14), ChannelNumber::Ch7);
        assert_eq!(ChannelNumber::from(RPGpio::GPIO28), ChannelNumber::Ch6);
        debug!("ChannelNumber enum OK");
    }

    fn test_channel_pin() {
        debug!("Testing ChannelPin enum...");
        assert_eq!(ChannelPin::from(RPGpio::GPIO4), ChannelPin::A);
        assert_eq!(ChannelPin::from(RPGpio::GPIO5), ChannelPin::B);
        debug!("ChannelPin enum OK");
    }

    fn test_channel(pwm: &Pwm, channel_number: ChannelNumber) {
        debug!("Starting testing channel {}...", channel_number as usize);

        // Testing set_enabled()
        pwm.set_enabled(channel_number, true);
        assert_eq!(
            pwm.registers.ch[channel_number as usize].csr.read(CSR::EN),
            1
        );
        pwm.set_enabled(channel_number, false);
        assert_eq!(
            pwm.registers.ch[channel_number as usize].csr.read(CSR::EN),
            0
        );

        // Testing set_ph_correct()
        pwm.set_ph_correct(channel_number, true);
        assert_eq!(
            pwm.registers.ch[channel_number as usize]
                .csr
                .read(CSR::PH_CORRECT),
            1
        );
        pwm.set_ph_correct(channel_number, false);
        assert_eq!(
            pwm.registers.ch[channel_number as usize]
                .csr
                .read(CSR::PH_CORRECT),
            0
        );

        // Testing set_invert_polarity()
        pwm.set_invert_polarity(channel_number, true, true);
        assert_eq!(
            pwm.registers.ch[channel_number as usize]
                .csr
                .read(CSR::A_INV),
            1
        );
        assert_eq!(
            pwm.registers.ch[channel_number as usize]
                .csr
                .read(CSR::B_INV),
            1
        );
        pwm.set_invert_polarity(channel_number, true, false);
        assert_eq!(
            pwm.registers.ch[channel_number as usize]
                .csr
                .read(CSR::A_INV),
            1
        );
        assert_eq!(
            pwm.registers.ch[channel_number as usize]
                .csr
                .read(CSR::B_INV),
            0
        );
        pwm.set_invert_polarity(channel_number, false, true);
        assert_eq!(
            pwm.registers.ch[channel_number as usize]
                .csr
                .read(CSR::A_INV),
            0
        );
        assert_eq!(
            pwm.registers.ch[channel_number as usize]
                .csr
                .read(CSR::B_INV),
            1
        );
        pwm.set_invert_polarity(channel_number, false, false);
        assert_eq!(
            pwm.registers.ch[channel_number as usize]
                .csr
                .read(CSR::A_INV),
            0
        );
        assert_eq!(
            pwm.registers.ch[channel_number as usize]
                .csr
                .read(CSR::B_INV),
            0
        );

        // Testing set_div_mode()
        pwm.set_div_mode(channel_number, DivMode::FreeRunning);
        assert_eq!(
            pwm.registers.ch[channel_number as usize]
                .csr
                .read(CSR::DIVMOD),
            DivMode::FreeRunning as u32
        );
        pwm.set_div_mode(channel_number, DivMode::High);
        assert_eq!(
            pwm.registers.ch[channel_number as usize]
                .csr
                .read(CSR::DIVMOD),
            DivMode::High as u32
        );
        pwm.set_div_mode(channel_number, DivMode::Rising);
        assert_eq!(
            pwm.registers.ch[channel_number as usize]
                .csr
                .read(CSR::DIVMOD),
            DivMode::Rising as u32
        );
        pwm.set_div_mode(channel_number, DivMode::Falling);
        assert_eq!(
            pwm.registers.ch[channel_number as usize]
                .csr
                .read(CSR::DIVMOD),
            DivMode::Falling as u32
        );

        // Testing set_divider_int_frac()
        pwm.set_divider_int_frac(channel_number, 123, 4);
        assert_eq!(
            pwm.registers.ch[channel_number as usize].div.read(DIV::INT),
            123
        );
        assert_eq!(
            pwm.registers.ch[channel_number as usize]
                .div
                .read(DIV::FRAC),
            4
        );

        // Testing set_compare_value() methods
        pwm.set_compare_value_a(channel_number, 2022);
        assert_eq!(
            pwm.registers.ch[channel_number as usize].cc.read(CC::A),
            2022
        );
        pwm.set_compare_value_b(channel_number, 12);
        assert_eq!(pwm.registers.ch[channel_number as usize].cc.read(CC::B), 12);
        pwm.set_compare_values_a_and_b(channel_number, 2023, 1);
        assert_eq!(
            pwm.registers.ch[channel_number as usize].cc.read(CC::A),
            2023
        );
        assert_eq!(pwm.registers.ch[channel_number as usize].cc.read(CC::B), 1);

        // Testing set_top()
        pwm.set_top(channel_number, 12345);
        assert_eq!(
            pwm.registers.ch[channel_number as usize].top.read(TOP::TOP),
            12345
        );

        // Testing get_counter() and set_counter()
        pwm.set_counter(channel_number, 1);
        assert_eq!(
            pwm.registers.ch[channel_number as usize].ctr.read(CTR::CTR),
            1
        );
        assert_eq!(pwm.get_counter(channel_number), 1);

        // Testing advance_count and retard_count()
        // The counter must be running to pass retard_count()
        // The counter must run at less than full speed (div_int + div_frac / 16 > 1) to pass
        // advance_count()
        pwm.set_div_mode(channel_number, DivMode::FreeRunning);
        assert!(pwm.advance_count(channel_number));
        assert_eq!(pwm.get_counter(channel_number), 2);
        pwm.set_enabled(channel_number, true);
        // No assert for retard count since it is impossible to predict how much the counter
        // will advance while running. However, the fact that the function returns true is a
        // good indicator that it does its job.
        assert!(pwm.retard_count(channel_number));
        // Disabling PWM to prevent it from generating interrupts signals for next tests
        pwm.set_enabled(channel_number, false);

        // Testing enable_interrupt() and disable_interrupt()
        pwm.enable_interrupt(channel_number);
        assert_eq!(
            pwm.registers.inte.read(CH::CH),
            1 << (channel_number as u32)
        );
        pwm.disable_interrupt(channel_number);
        assert_eq!(pwm.registers.inte.read(CH::CH), 0);

        // Testing get_interrupt_status()
        pwm.enable_interrupt(channel_number);
        pwm.set_counter(channel_number, 12345);
        pwm.advance_count(channel_number);
        assert!(pwm.get_interrupt_status(channel_number));
        pwm.disable_interrupt(channel_number);

        // Testing clear_interrupt()
        pwm.clear_interrupt(channel_number);
        assert!(!pwm.get_interrupt_status(channel_number));

        // Testing force_interrupt(), unforce_interrupt()
        pwm.force_interrupt(channel_number);
        assert_eq!(
            pwm.registers.intf.read(CH::CH),
            1 << (channel_number as u32)
        );
        assert!(pwm.get_interrupt_status(channel_number));
        pwm.unforce_interrupt(channel_number);
        assert_eq!(pwm.registers.intf.read(CH::CH), 0);
        assert!(!pwm.get_interrupt_status(channel_number));

        debug!("Channel {} works!", channel_number as usize);
    }

    fn test_pwm_struct(pwm: &Pwm) {
        debug!("Testing PWM struct...");
        let channel_number_list = [
            // Pins 0 and 1 are kept available for UART
            ChannelNumber::Ch1,
            ChannelNumber::Ch2,
            ChannelNumber::Ch3,
            ChannelNumber::Ch4,
            ChannelNumber::Ch5,
            ChannelNumber::Ch6,
            ChannelNumber::Ch7,
        ];

        // Testing enable_mask_interrupt() and disable_mask_interrupt()
        pwm.enable_mask_interrupt(u8::MAX);
        assert_eq!(pwm.registers.inte.read(CH::CH), u8::MAX as u32);
        pwm.disable_mask_interrupt(u8::MAX);
        assert_eq!(pwm.registers.inte.read(CH::CH), 0);

        for channel_number in channel_number_list {
            test_channel(pwm, channel_number);
        }
        debug!("PWM struct OK");
    }

    fn test_pwm_pin_struct<'a>(pwm: &'a Pwm<'a>) {
        debug!("Testing PwmPin struct...");
        let pwm_pin = pwm.gpio_to_pwm_pin(RPGpio::GPIO13);
        assert_eq!(pwm_pin.get_channel_number(), ChannelNumber::Ch6);
        assert_eq!(pwm_pin.get_channel_pin(), ChannelPin::B);

        pwm_pin.set_invert_polarity(true);
        assert_eq!(
            pwm.registers.ch[pwm_pin.get_channel_number() as usize]
                .csr
                .read(CSR::B_INV),
            1
        );
        pwm_pin.set_invert_polarity(false);
        assert_eq!(
            pwm.registers.ch[pwm_pin.get_channel_number() as usize]
                .csr
                .read(CSR::B_INV),
            0
        );

        pwm_pin.set_compare_value(987);
        assert_eq!(
            pwm.registers.ch[pwm_pin.get_channel_number() as usize]
                .cc
                .read(CC::B),
            987
        );
        debug!("PwmPin struct OK");
    }

    fn test_pwm_trait(pwm: &Pwm) {
        debug!("Testing PWM HIL trait...");
        let max_freq_hz = hil::pwm::Pwm::get_maximum_frequency_hz(pwm);
        let max_duty_cycle = hil::pwm::Pwm::get_maximum_duty_cycle(pwm);

        let (top, int, frac) = pwm.compute_top_int_frac(max_freq_hz).unwrap();
        assert_eq!(top, 0);
        assert_eq!(int, 1);
        assert_eq!(frac, 0);

        let (top, int, frac) = pwm.compute_top_int_frac(max_freq_hz / 4).unwrap();
        assert_eq!(top, 3);
        assert_eq!(int, 1);
        assert_eq!(frac, 0);

        let (top, int, frac) = pwm
            .compute_top_int_frac(max_freq_hz / max_duty_cycle)
            .unwrap();
        assert_eq!(top, u16::MAX);
        assert_eq!(int, 1);
        assert_eq!(frac, 0);

        let (top, int, frac) = pwm
            .compute_top_int_frac(max_freq_hz / max_duty_cycle / 2)
            .unwrap();
        assert_eq!(top, u16::MAX);
        assert_eq!(int, 2);
        assert_eq!(frac, 0);

        let freq = ((max_freq_hz / max_duty_cycle) as f32 / 2.5) as usize;
        let (top, int, frac) = pwm.compute_top_int_frac(freq).unwrap();
        assert_eq!(top, u16::MAX);
        assert_eq!(int, 2);
        assert_eq!(frac, 8);

        let freq = ((max_freq_hz / max_duty_cycle) as f32 / 3.15) as usize;
        let (top, int, frac) = pwm.compute_top_int_frac(freq).unwrap();
        assert_eq!(top, u16::MAX);
        assert_eq!(int, 3);
        assert_eq!(frac, 2);

        assert!(pwm
            .compute_top_int_frac(max_freq_hz / max_duty_cycle / 256)
            .is_err());
        assert!(pwm.compute_top_int_frac(max_freq_hz + 1).is_err());

        let (channel_number, channel_pin) = pwm.gpio_to_pwm(RPGpio::GPIO24);
        assert!(pwm
            .start_pwm_pin(channel_number, channel_pin, max_freq_hz / 4, 0)
            .is_ok());
        assert_eq!(pwm.registers.ch[channel_number as usize].cc.read(CC::A), 0);

        assert!(pwm
            .start_pwm_pin(
                channel_number,
                channel_pin,
                max_freq_hz / 4,
                max_duty_cycle / 4 * 3
            )
            .is_ok());
        assert_eq!(pwm.registers.ch[channel_number as usize].cc.read(CC::A), 3);

        assert!(pwm
            .start_pwm_pin(channel_number, channel_pin, max_freq_hz / 4, max_duty_cycle)
            .is_ok());
        assert_eq!(pwm.registers.ch[channel_number as usize].cc.read(CC::A), 4);

        assert!(pwm
            .start_pwm_pin(
                channel_number,
                channel_pin,
                max_freq_hz / max_duty_cycle,
                max_duty_cycle
            )
            .is_err());
        assert!(pwm
            .start_pwm_pin(channel_number, channel_pin, max_freq_hz + 1, max_duty_cycle)
            .is_err());
        assert!(pwm
            .start_pwm_pin(channel_number, channel_pin, max_freq_hz, max_duty_cycle + 1)
            .is_err());
        debug!("PWM HIL trait OK")
    }

    /// Run all unit tests
    ///
    /// pwm must be initialized and its dependencies resolved.
    pub fn run<'a>(pwm: &'a Pwm<'a>) {
        test_channel_number();
        test_channel_pin();
        test_pwm_struct(pwm);
        test_pwm_pin_struct(pwm);
        test_pwm_trait(pwm);
    }
}