capsules_extra/
mcp230xx.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! SyscallDriver for the Microchip MCP230xx I2C GPIO extenders.
//!
//! - <https://www.microchip.com/wwwproducts/en/MCP23008>
//! - <https://www.microchip.com/wwwproducts/en/MCP23017>
//!
//! Paraphrased from the website for the MCP23008:
//!
//! > The MCP23008 device provides 8-bit, general purpose, parallel I/O
//! > expansion for I2C bus applications. The MCP23008 has three address pins
//! > and consists of multiple 8-bit configuration registers for input, output
//! > and polarity selection. The system master can enable the I/Os as either
//! > inputs or outputs by writing the I/O configuration bits. The data for each
//! > input or output is kept in the corresponding Input or Output register. The
//! > polarity of the Input Port register can be inverted with the Polarity
//! > Inversion register. All registers can be read by the system master.
//!
//! This driver can support the MCP230xx series GPIO extenders with a
//! configurable number of banks.
//!
//! Usage
//! -----
//! This capsule can either be used inside of the kernel or as an input to
//! the `gpio_async` capsule because it implements the `gpio_async::Port`
//! trait.
//!
//! Example usage:
//!
//! ```rust,ignore
//! # use kernel::static_init;
//!
//! // Configure the MCP230xx. Device address 0x20.
//! let mcp230xx_i2c = static_init!(
//!     capsules::virtual_i2c::I2CDevice,
//!     capsules::virtual_i2c::I2CDevice::new(i2c_mux, 0x20));
//! let mcp230xx_buffer = static_init!([u8; capsules::mcp230xx::BUFFER_LENGTH],
//!                                    [0; capsules::mcp230xx::BUFFER_LENGTH]);
//! let mcp230xx = static_init!(
//!     capsules::mcp230xx::MCP230xx<'static>,
//!     capsules::mcp230xx::MCP230xx::new(mcp230xx_i2c,
//!                                       Some(&sam4l::gpio::PA[04]),
//!                                       None,
//!                                       mcp230xx_buffer,
//!                                       8, // How many pins in a bank
//!                                       1, // How many pin banks on the chip
//!                                       ));
//! mcp230xx_i2c.set_client(mcp230xx);
//! sam4l::gpio::PA[04].set_client(mcp230xx);
//!
//! // Create an array of the GPIO extenders so we can pass them to an
//! // administrative layer that provides a single interface to them all.
//! let async_gpio_ports = static_init!(
//!     [&'static capsules::mcp230xx::MCP230xx; 1],
//!     [mcp230xx]);
//!
//! // `gpio_async` is the object that manages all of the extenders.
//! let gpio_async = static_init!(
//!     capsules::gpio_async::GPIOAsync<'static, capsules::mcp230xx::MCP230xx<'static>>,
//!     capsules::gpio_async::GPIOAsync::new(async_gpio_ports));
//! // Setup the clients correctly.
//! for port in async_gpio_ports.iter() {
//!     port.set_client(gpio_async);
//! }
//! ```
//!
//! Note that if interrupts are not needed, a `None` can be passed in when the
//! `mcp230xx` object is created.

use core::cell::Cell;
use kernel::hil;
use kernel::hil::gpio;
use kernel::hil::gpio_async;
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::ErrorCode;

// Buffer to use for I2C messages
pub const BUFFER_LENGTH: usize = 7;

#[allow(dead_code)]
#[derive(Debug)]
enum Registers {
    IoDir = 0x00,
    IPol = 0x01,
    GpIntEn = 0x02,
    DefVal = 0x03,
    IntCon = 0x04,
    IoCon = 0x05,
    GpPu = 0x06,
    IntF = 0x07,
    IntCap = 0x08,
    Gpio = 0x09,
    OLat = 0x0a,
}

/// States of the I2C protocol with the MCP230xx.
#[derive(Clone, Copy, Debug, PartialEq)]
enum State {
    Idle,

    // Setup input/output
    SelectIoDir(u8, Direction),
    ReadIoDir(u8, Direction),
    SelectIoDirForGpPu(u8, bool),
    ReadIoDirForGpPu(u8, bool),
    SetIoDirForGpPu(u8, bool),
    ReadGpPu(u8, bool),
    SelectGpio(u8, PinState),
    ReadGpio(u8, PinState),
    SelectGpioToggle(u8),
    ReadGpioToggle(u8),
    SelectGpioRead(u8),
    ReadGpioRead(u8),
    EnableInterruptSettings(u8),
    ReadInterruptSetup(u8),
    ReadInterruptValues(u8),

    /// Disable I2C and release buffer
    Done,
}

#[derive(Clone, Copy, Debug, PartialEq)]
enum Direction {
    Input = 0x01,
    Output = 0x00,
}

#[derive(Clone, Copy, Debug, PartialEq)]
enum PinState {
    High = 0x01,
    Low = 0x00,
}

pub struct MCP230xx<'a, I: hil::i2c::I2CDevice> {
    i2c: &'a I,
    state: Cell<State>,
    bank_size: u8,       // How many GPIO pins per bank (likely 8)
    number_of_banks: u8, // How many GPIO banks this extender has (likely 1 or 2)
    buffer: TakeCell<'static, [u8]>,
    interrupt_pin_a: Option<&'a dyn gpio::InterruptValuePin<'a>>,
    interrupt_pin_b: Option<&'a dyn gpio::InterruptValuePin<'a>>,
    interrupts_enabled: Cell<u32>, // Whether the pin interrupt is enabled
    interrupts_mode: Cell<u32>,    // What interrupt mode the pin is in
    client: OptionalCell<&'static dyn gpio_async::Client>,
}

impl<'a, I: hil::i2c::I2CDevice> MCP230xx<'a, I> {
    pub fn new(
        i2c: &'a I,
        interrupt_pin_a: Option<&'a dyn gpio::InterruptValuePin<'a>>,
        interrupt_pin_b: Option<&'a dyn gpio::InterruptValuePin<'a>>,
        buffer: &'static mut [u8],
        bank_size: u8,
        number_of_banks: u8,
    ) -> MCP230xx<'a, I> {
        MCP230xx {
            i2c,
            state: Cell::new(State::Idle),
            bank_size,
            number_of_banks,
            buffer: TakeCell::new(buffer),
            interrupt_pin_a,
            interrupt_pin_b,
            interrupts_enabled: Cell::new(0),
            interrupts_mode: Cell::new(0),
            client: OptionalCell::empty(),
        }
    }

    /// Set the client of this MCP230xx when commands finish or interrupts
    /// occur. The `identifier` is simply passed back with the callback
    /// so that the upper layer can keep track of which device triggered.
    pub fn set_client<C: gpio_async::Client>(&self, client: &'static C) {
        self.client.set(client);
    }

    fn enable_host_interrupt(&self) -> Result<(), ErrorCode> {
        // We configure the MCP230xx to use an active high interrupt.
        // If we don't have an interrupt pin mapped to this driver then we
        // obviously can't do interrupts.
        let first = self
            .interrupt_pin_a
            .map_or(Err(ErrorCode::FAIL), |interrupt_pin| {
                interrupt_pin.make_input();
                let _ = interrupt_pin.enable_interrupts(gpio::InterruptEdge::RisingEdge);
                Ok(())
            });
        if first != Ok(()) {
            return first;
        }
        // Also do the other interrupt pin if it exists.
        self.interrupt_pin_b.map(|interrupt_pin| {
            interrupt_pin.make_input();
            let _ = interrupt_pin.enable_interrupts(gpio::InterruptEdge::RisingEdge);
        });
        Ok(())
    }

    /// This calculates the actual register address to use based on the list of
    /// registers in the `Registers` enum definitions. This is needed because
    /// the addresses are different for single- and multi-port mcp230xx
    /// extenders.
    ///
    /// If this is a single port extender then the register index is the same as
    /// the `Registers` enum and what is passed in is returned. If the chip has
    /// multiple banks then the register address is shifted based on the number
    /// and size of the bank.
    fn calc_register_addr(&self, register: Registers, pin_number: u8) -> u8 {
        if self.number_of_banks == 1 {
            pin_number
        } else {
            // Calculate an offset based on which bank this pin is in.
            let offset = pin_number / self.bank_size;
            // The register index is then the original value multiplied by
            // the number of banks, plus the offset.
            (register as u8 * self.number_of_banks) + offset
        }
    }

    fn set_direction(&self, pin_number: u8, direction: Direction) -> Result<(), ErrorCode> {
        self.buffer.take().map_or(Err(ErrorCode::BUSY), |buffer| {
            self.i2c.enable();

            buffer[0] = self.calc_register_addr(Registers::IoDir, pin_number);
            // TODO verify errors
            let _ = self.i2c.write(buffer, 1);
            self.state.set(State::SelectIoDir(pin_number, direction));

            Ok(())
        })
    }

    /// Set the pull-up on the pin also configure it to be an input.
    fn configure_pullup(&self, pin_number: u8, enabled: bool) -> Result<(), ErrorCode> {
        self.buffer.take().map_or(Err(ErrorCode::BUSY), |buffer| {
            self.i2c.enable();

            buffer[0] = self.calc_register_addr(Registers::IoDir, pin_number);
            // TODO verify errors
            let _ = self.i2c.write(buffer, 1);
            self.state
                .set(State::SelectIoDirForGpPu(pin_number, enabled));

            Ok(())
        })
    }

    fn set_pin(&self, pin_number: u8, value: PinState) -> Result<(), ErrorCode> {
        self.buffer.take().map_or(Err(ErrorCode::BUSY), |buffer| {
            self.i2c.enable();

            buffer[0] = self.calc_register_addr(Registers::Gpio, pin_number);
            // TODO verify errors
            let _ = self.i2c.write(buffer, 1);
            self.state.set(State::SelectGpio(pin_number, value));

            Ok(())
        })
    }

    fn toggle_pin(&self, pin_number: u8) -> Result<(), ErrorCode> {
        self.buffer.take().map_or(Err(ErrorCode::BUSY), |buffer| {
            self.i2c.enable();

            buffer[0] = self.calc_register_addr(Registers::Gpio, pin_number);
            // TODO verify errors
            let _ = self.i2c.write(buffer, 1);
            self.state.set(State::SelectGpioToggle(pin_number));

            Ok(())
        })
    }

    fn read_pin(&self, pin_number: u8) -> Result<(), ErrorCode> {
        self.buffer.take().map_or(Err(ErrorCode::BUSY), |buffer| {
            self.i2c.enable();

            buffer[0] = self.calc_register_addr(Registers::Gpio, pin_number);
            // TODO verify errors
            let _ = self.i2c.write(buffer, 1);
            self.state.set(State::SelectGpioRead(pin_number));

            Ok(())
        })
    }

    fn enable_interrupt_pin(
        &self,
        pin_number: u8,
        direction: gpio::InterruptEdge,
    ) -> Result<(), ErrorCode> {
        self.buffer.take().map_or(Err(ErrorCode::BUSY), |buffer| {
            self.i2c.enable();

            // Mark the settings that we have for this interrupt.
            // Since the MCP230xx only seems to support level interrupts
            // and both edge interrupts, we choose to use both edge interrupts
            // and then filter here in the driver if the user only asked
            // for one direction interrupts. To do this, we need to know what
            // the user asked for.
            self.save_pin_interrupt_state(pin_number, true, direction);

            // Setup interrupt configs that are true of all interrupts
            buffer[0] = self.calc_register_addr(Registers::IntCon, 0);
            // Set all of the IntCon registers to zero.
            let mut i: usize = 1;
            for _ in 0..(self.number_of_banks as usize) {
                buffer[i] = 0; // Make all pins toggle on every change.
                i += 1;
            }
            // The next register is the IoCon (configuration) register, which
            // we also want to set.
            buffer[i] = 0b00000010; // Make MCP230xx interrupt pin active high.
                                    // TODO verify errors
            let _ = self.i2c.write(buffer, i + 1);
            self.state.set(State::EnableInterruptSettings(pin_number));

            Ok(())
        })
    }

    fn disable_interrupt_pin(&self, pin_number: u8) -> Result<(), ErrorCode> {
        self.buffer.take().map_or(Err(ErrorCode::BUSY), |buffer| {
            self.i2c.enable();

            // Clear this interrupt from our setup.
            self.remove_pin_interrupt_state(pin_number);

            // Just have to write the new interrupt settings.
            buffer[0] = self.calc_register_addr(Registers::GpIntEn, pin_number);
            buffer[1] = self.get_pin_interrupt_enabled_state(pin_number);
            // TODO verify errors
            let _ = self.i2c.write(buffer, 2);
            self.state.set(State::Done);

            Ok(())
        })
    }

    /// Helper function for keeping track of which interrupts are currently
    /// enabled.
    fn save_pin_interrupt_state(
        &self,
        pin_number: u8,
        enabled: bool,
        direction: gpio::InterruptEdge,
    ) {
        // Set the enabled bitmap.
        let mut current_enabled = self.interrupts_enabled.get();
        // Clear out existing settings
        current_enabled &= !(1 << pin_number);
        // Set new value
        current_enabled |= (enabled as u32) << pin_number;
        self.interrupts_enabled.set(current_enabled);

        // Set the direction bitmap.
        let mut current_mode = self.interrupts_mode.get();
        // Clear out existing settings
        current_mode &= !(0x03 << (2 * pin_number));
        // Generate new settings
        let new_settings = (direction as u32) & 0x03;
        // Update settings
        current_mode |= new_settings << (2 * pin_number);
        self.interrupts_mode.set(current_mode);
    }

    fn remove_pin_interrupt_state(&self, pin_number: u8) {
        let new_enabled = self.interrupts_enabled.get() & !(1 << pin_number);
        self.interrupts_enabled.set(new_enabled);
        let new_mode = self.interrupts_mode.get() & !(0x03 << (2 * pin_number));
        self.interrupts_mode.set(new_mode);
    }

    /// Create an 8 bit bitmask of which interrupts are enabled.
    fn get_pin_interrupt_enabled_state(&self, pin_number: u8) -> u8 {
        let offset = (pin_number / self.bank_size) * self.bank_size;
        let interrupts_enabled = self.interrupts_enabled.get();
        (interrupts_enabled >> offset) as u8
    }

    fn check_pin_interrupt_enabled(&self, pin_number: u8) -> bool {
        (self.interrupts_enabled.get() >> pin_number) & 0x01 == 0x01
    }

    fn get_pin_interrupt_direction(&self, pin_number: u8) -> gpio::InterruptEdge {
        let direction = self.interrupts_mode.get() >> (pin_number * 2) & 0x03;
        match direction {
            0 => gpio::InterruptEdge::RisingEdge,
            1 => gpio::InterruptEdge::FallingEdge,
            _ => gpio::InterruptEdge::EitherEdge,
        }
    }
}

impl<I: hil::i2c::I2CDevice> hil::i2c::I2CClient for MCP230xx<'_, I> {
    fn command_complete(&self, buffer: &'static mut [u8], _status: Result<(), hil::i2c::Error>) {
        match self.state.get() {
            State::SelectIoDir(pin_number, direction) => {
                // TODO verify errors
                let _ = self.i2c.read(buffer, 1);
                self.state.set(State::ReadIoDir(pin_number, direction));
            }
            State::ReadIoDir(pin_number, direction) => {
                if direction == Direction::Input {
                    buffer[1] = buffer[0] | (1 << pin_number);
                } else {
                    buffer[1] = buffer[0] & !(1 << pin_number);
                }
                buffer[0] = self.calc_register_addr(Registers::IoDir, pin_number);
                // TODO verify errors
                let _ = self.i2c.write(buffer, 2);
                self.state.set(State::Done);
            }
            State::SelectIoDirForGpPu(pin_number, enabled) => {
                // TODO verify errors
                let _ = self.i2c.read(buffer, 1);
                self.state.set(State::ReadIoDirForGpPu(pin_number, enabled));
            }
            State::ReadIoDirForGpPu(pin_number, enabled) => {
                // Make sure the pin is enabled.
                buffer[1] = buffer[0] | (1 << pin_number);
                buffer[0] = self.calc_register_addr(Registers::IoDir, pin_number);
                // TODO verify errors
                let _ = self.i2c.write(buffer, 2);
                self.state.set(State::SetIoDirForGpPu(pin_number, enabled));
            }
            State::SetIoDirForGpPu(pin_number, enabled) => {
                buffer[0] = self.calc_register_addr(Registers::GpPu, pin_number);
                // TODO verify errors
                let _ = self.i2c.write(buffer, 1);
                self.state.set(State::ReadGpPu(pin_number, enabled));
            }
            State::ReadGpPu(pin_number, enabled) => {
                // Configure the pullup status and save it in the buffer.
                let pullup = match enabled {
                    true => buffer[0] | (1 << pin_number),
                    false => buffer[0] & !(1 << pin_number),
                };
                buffer[0] = self.calc_register_addr(Registers::GpPu, pin_number);
                buffer[1] = pullup;
                // TODO verify errors
                let _ = self.i2c.write(buffer, 2);
                self.state.set(State::Done);
            }
            State::SelectGpio(pin_number, value) => {
                // TODO verify errors
                let _ = self.i2c.read(buffer, 1);
                self.state.set(State::ReadGpio(pin_number, value));
            }
            State::ReadGpio(pin_number, value) => {
                buffer[1] = match value {
                    PinState::High => buffer[0] | (1 << pin_number),
                    PinState::Low => buffer[0] & !(1 << pin_number),
                };
                buffer[0] = self.calc_register_addr(Registers::Gpio, pin_number);
                // TODO verify errors
                let _ = self.i2c.write(buffer, 2);
                self.state.set(State::Done);
            }
            State::SelectGpioToggle(pin_number) => {
                // TODO verify errors
                let _ = self.i2c.read(buffer, 1);
                self.state.set(State::ReadGpioToggle(pin_number));
            }
            State::ReadGpioToggle(pin_number) => {
                buffer[1] = buffer[0] ^ (1 << pin_number);
                buffer[0] = self.calc_register_addr(Registers::Gpio, pin_number);
                // TODO verify errors
                let _ = self.i2c.write(buffer, 2);
                self.state.set(State::Done);
            }
            State::SelectGpioRead(pin_number) => {
                // TODO verify errors
                let _ = self.i2c.read(buffer, 1);
                self.state.set(State::ReadGpioRead(pin_number));
            }
            State::ReadGpioRead(pin_number) => {
                let pin_value = (buffer[0] >> pin_number) & 0x01;

                self.client.map(|client| {
                    client.done(pin_value as usize);
                });

                self.buffer.replace(buffer);
                self.i2c.disable();
                self.state.set(State::Idle);
            }
            State::EnableInterruptSettings(pin_number) => {
                // Rather than read the current interrupts and write those
                // back, just write the entire register with our saved state.
                buffer[0] = self.calc_register_addr(Registers::GpIntEn, pin_number);
                buffer[1] = self.get_pin_interrupt_enabled_state(pin_number);
                // TODO verify errors
                let _ = self.i2c.write(buffer, 2);
                self.state.set(State::Done);
            }
            State::ReadInterruptSetup(bank_number) => {
                // Now read the interrupt flags and the state of the lines
                // TODO verify errors
                let _ = self.i2c.read(buffer, 3);
                self.state.set(State::ReadInterruptValues(bank_number));
            }
            State::ReadInterruptValues(bank_number) => {
                let interrupt_flags = buffer[0];
                let pins_status = buffer[2];
                // Check each bit to see if that pin triggered an interrupt.
                for i in 0..8 {
                    // Calculate the actual pin number based on which bank we
                    // are examining.
                    let pin_number = i + (bank_number * self.bank_size);
                    // Check that this pin is actually enabled.
                    if !self.check_pin_interrupt_enabled(pin_number) {
                        continue;
                    }
                    if (interrupt_flags >> i) & 0x01 == 0x01 {
                        // Use the GPIO register to determine which way the
                        // interrupt went.
                        let pin_status = (pins_status >> i) & 0x01;
                        let interrupt_direction = self.get_pin_interrupt_direction(pin_number);
                        // Check to see if this was an interrupt we want
                        // to report.
                        let fire_interrupt = match interrupt_direction {
                            gpio::InterruptEdge::EitherEdge => true,
                            gpio::InterruptEdge::RisingEdge => pin_status == 0x01,
                            gpio::InterruptEdge::FallingEdge => pin_status == 0x00,
                        };
                        if fire_interrupt {
                            // Signal this interrupt to the application.
                            self.client.map(|client| {
                                // Return both the pin that interrupted and
                                // the identifier that was passed for
                                // enable_interrupt.
                                client.fired(pin_number as usize, 0);
                            });
                            break;
                        }
                    }
                }
                self.buffer.replace(buffer);
                self.i2c.disable();
                self.state.set(State::Idle);
            }
            State::Done => {
                self.client.map(|client| {
                    client.done(0);
                });

                self.buffer.replace(buffer);
                self.i2c.disable();
                self.state.set(State::Idle);
            }
            _ => {}
        }
    }
}

impl<I: hil::i2c::I2CDevice> gpio::ClientWithValue for MCP230xx<'_, I> {
    fn fired(&self, value: u32) {
        if value < 2 {
            return; // Error, value specifies which pin A=0, B=1
        }
        self.buffer.take().map(|buffer| {
            let bank_number = value;
            self.i2c.enable();

            // Need to read the IntF register which marks which pins
            // interrupted.
            buffer[0] =
                self.calc_register_addr(Registers::IntF, bank_number as u8 * self.bank_size);
            // TODO verify errors
            let _ = self.i2c.write(buffer, 1);
            self.state.set(State::ReadInterruptSetup(bank_number as u8));
        });
    }
}

impl<I: hil::i2c::I2CDevice> gpio_async::Port for MCP230xx<'_, I> {
    fn disable(&self, pin: usize) -> Result<(), ErrorCode> {
        // Best we can do is make this an input.
        self.set_direction(pin as u8, Direction::Input)
    }

    fn make_output(&self, pin: usize) -> Result<(), ErrorCode> {
        if pin > ((self.number_of_banks * self.bank_size) - 1) as usize {
            return Err(ErrorCode::INVAL);
        }
        self.set_direction(pin as u8, Direction::Output)
    }

    fn make_input(&self, pin: usize, mode: gpio::FloatingState) -> Result<(), ErrorCode> {
        if pin > ((self.number_of_banks * self.bank_size) - 1) as usize {
            return Err(ErrorCode::INVAL);
        }
        match mode {
            gpio::FloatingState::PullUp => self.configure_pullup(pin as u8, true),
            gpio::FloatingState::PullDown => {
                // No support for this
                self.configure_pullup(pin as u8, false)
            }
            gpio::FloatingState::PullNone => self.configure_pullup(pin as u8, false),
        }
    }

    fn read(&self, pin: usize) -> Result<(), ErrorCode> {
        if pin > ((self.number_of_banks * self.bank_size) - 1) as usize {
            return Err(ErrorCode::INVAL);
        }
        self.read_pin(pin as u8)
    }

    fn toggle(&self, pin: usize) -> Result<(), ErrorCode> {
        if pin > ((self.number_of_banks * self.bank_size) - 1) as usize {
            return Err(ErrorCode::INVAL);
        }
        self.toggle_pin(pin as u8)
    }

    fn set(&self, pin: usize) -> Result<(), ErrorCode> {
        if pin > ((self.number_of_banks * self.bank_size) - 1) as usize {
            return Err(ErrorCode::INVAL);
        }
        self.set_pin(pin as u8, PinState::High)
    }

    fn clear(&self, pin: usize) -> Result<(), ErrorCode> {
        if pin > ((self.number_of_banks * self.bank_size) - 1) as usize {
            return Err(ErrorCode::INVAL);
        }
        self.set_pin(pin as u8, PinState::Low)
    }

    fn enable_interrupt(&self, pin: usize, mode: gpio::InterruptEdge) -> Result<(), ErrorCode> {
        if pin > ((self.number_of_banks * self.bank_size) - 1) as usize {
            return Err(ErrorCode::INVAL);
        }
        let ret = self.enable_host_interrupt();
        match ret {
            Ok(()) => self.enable_interrupt_pin(pin as u8, mode),
            _ => ret,
        }
    }

    fn disable_interrupt(&self, pin: usize) -> Result<(), ErrorCode> {
        if pin > ((self.number_of_banks * self.bank_size) - 1) as usize {
            return Err(ErrorCode::INVAL);
        }
        self.disable_interrupt_pin(pin as u8)
    }

    fn is_pending(&self, _pin: usize) -> bool {
        false
    }
}