lowrisc/
uart.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! UART driver.

use core::cell::Cell;
use kernel::ErrorCode;

use kernel::deferred_call::{DeferredCall, DeferredCallClient};
use kernel::hil;
use kernel::hil::uart;
use kernel::utilities::cells::OptionalCell;
use kernel::utilities::cells::TakeCell;
use kernel::utilities::registers::interfaces::{ReadWriteable, Readable, Writeable};
use kernel::utilities::StaticRef;

use crate::registers::uart_regs::UartRegisters;
use crate::registers::uart_regs::{CTRL, FIFO_CTRL, INTR, STATUS, TIMEOUT_CTRL, WDATA};

pub struct Uart<'a> {
    registers: StaticRef<UartRegisters>,
    clock_frequency: u32,
    tx_client: OptionalCell<&'a dyn hil::uart::TransmitClient>,
    rx_client: OptionalCell<&'a dyn hil::uart::ReceiveClient>,
    rx_deferred_call: DeferredCall,

    tx_buffer: TakeCell<'static, [u8]>,
    tx_len: Cell<usize>,
    tx_index: Cell<usize>,

    rx_buffer: TakeCell<'static, [u8]>,
    rx_len: Cell<usize>,
    rx_index: Cell<usize>,
    rx_timeout: Cell<u8>,
}

#[derive(Copy, Clone)]
pub struct UartParams {
    pub baud_rate: u32,
    pub parity: uart::Parity,
}

/// Compute a / b, rounding such that the result is within 2.5% error of the floating point result.
fn div_round_bounded(a: u64, b: u64) -> Result<u64, ErrorCode> {
    let q = a / b;

    if 39 * a <= 40 * b * q {
        Ok(q)
    } else if 40 * b * (q + 1) <= 41 * a {
        Ok(q + 1)
    } else {
        Err(ErrorCode::INVAL)
    }
}

impl<'a> Uart<'a> {
    pub fn new(base: StaticRef<UartRegisters>, clock_frequency: u32) -> Uart<'a> {
        Uart {
            registers: base,
            clock_frequency,
            tx_client: OptionalCell::empty(),
            rx_client: OptionalCell::empty(),
            rx_deferred_call: DeferredCall::new(),
            tx_buffer: TakeCell::empty(),
            tx_len: Cell::new(0),
            tx_index: Cell::new(0),
            rx_buffer: TakeCell::empty(),
            rx_len: Cell::new(0),
            rx_index: Cell::new(0),
            rx_timeout: Cell::new(0),
        }
    }

    fn set_baud_rate(&self, baud_rate: u32) -> Result<(), ErrorCode> {
        const NCO_BITS: u32 = u32::count_ones(CTRL::NCO.mask);

        let regs = self.registers;
        let baud_adj = (baud_rate as u64) << (NCO_BITS + 4);
        let freq_clk = self.clock_frequency as u64;
        let uart_ctrl_nco = div_round_bounded(baud_adj, freq_clk)?;

        regs.ctrl
            .write(CTRL::NCO.val((uart_ctrl_nco & 0xffff) as u32));
        regs.ctrl.modify(CTRL::TX::SET + CTRL::RX::SET);

        regs.fifo_ctrl
            .write(FIFO_CTRL::RXRST::SET + FIFO_CTRL::TXRST::SET);

        Ok(())
    }

    fn enable_tx_interrupt(&self) {
        let regs = self.registers;

        regs.intr_enable.modify(INTR::TX_EMPTY::SET);
    }

    fn disable_tx_interrupt(&self) {
        let regs = self.registers;

        regs.intr_enable.modify(INTR::TX_EMPTY::CLEAR);
        // Clear the interrupt bit (by writing 1), if it happens to be set
        regs.intr_state.write(INTR::TX_EMPTY::SET);
    }

    fn enable_rx_interrupt(&self) {
        let regs = self.registers;

        // Generate an interrupt if we get any value in the RX buffer
        regs.intr_enable.modify(INTR::RX_WATERMARK::SET);
        regs.fifo_ctrl.write(FIFO_CTRL::RXILVL.val(0_u32));

        // In cases where the RX FIFO isn't empty the edge-triggered watermark will never trigger.
        // If there is already data pending, set a deferred call to read the data instead.
        if !regs.status.is_set(STATUS::RXEMPTY) {
            self.rx_deferred_call.set();
            self.disable_rx_interrupt();
        }
    }

    fn disable_rx_interrupt(&self) {
        let regs = self.registers;

        // Generate an interrupt if we get any value in the RX buffer
        regs.intr_enable.modify(INTR::RX_WATERMARK::CLEAR);

        // Clear the interrupt bit (by writing 1), if it happens to be set
        regs.intr_state.write(INTR::RX_WATERMARK::SET);
    }

    fn enable_rx_timeout(&self, interbyte_timeout: u8) {
        let regs = self.registers;

        // Program the timeout value
        regs.timeout_ctrl
            .write(TIMEOUT_CTRL::VAL.val(interbyte_timeout as u32));

        // Enable RX timeout feature
        regs.timeout_ctrl.write(TIMEOUT_CTRL::EN::SET);

        // Enable RX timeout interrupt
        regs.intr_enable.write(INTR::RX_TIMEOUT::SET);
    }

    fn disable_rx_timeout(&self) {
        let regs = self.registers;

        // Disable RX timeout feature
        regs.timeout_ctrl.modify(TIMEOUT_CTRL::EN::CLEAR);

        // Disable RX timeout interrupt
        regs.intr_enable.modify(INTR::RX_TIMEOUT::CLEAR);

        // Clear the interrupt bit (by writing 1), if it happens to be set
        regs.intr_state.write(INTR::RX_TIMEOUT::SET);
    }

    fn tx_progress(&self) {
        let regs = self.registers;
        let idx = self.tx_index.get();
        let len = self.tx_len.get();

        if idx < len {
            // If we are going to transmit anything, we first need to enable the
            // TX interrupt. This ensures that we will get an interrupt, where
            // we can either call the callback from, or continue transmitting
            // bytes.
            self.enable_tx_interrupt();

            // Read from the transmit buffer and send bytes to the UART hardware
            // until either the buffer is empty or the UART hardware is full.
            self.tx_buffer.map(|tx_buf| {
                let tx_len = len - idx;

                for i in 0..tx_len {
                    if regs.status.is_set(STATUS::TXFULL) {
                        break;
                    }
                    let tx_idx = idx + i;
                    regs.wdata.write(WDATA::WDATA.val(tx_buf[tx_idx] as u32));
                    self.tx_index.set(tx_idx + 1)
                }
            });
        }
    }

    fn consume_rx(&self) {
        let regs = self.registers;

        self.rx_client.map(|client| {
            self.rx_buffer.take().map(|rx_buf| {
                let mut len = 0;
                let mut return_code = Ok(());

                for i in self.rx_index.get()..self.rx_len.get() {
                    if regs.status.is_set(STATUS::RXEMPTY) {
                        /* RX is empty */

                        // If this was kicked off by `receive_automatic()` then we can reenable
                        // interupts and wait for either the rest of the data or for the timeout.
                        let rx_timeout = self.rx_timeout.get();
                        if rx_timeout > 0 {
                            self.rx_index.set(i);
                            self.enable_rx_timeout(rx_timeout);
                            self.enable_rx_interrupt();
                            return;
                        } else {
                            return_code = Err(ErrorCode::SIZE);
                            break;
                        }
                    }

                    rx_buf[i] = regs.rdata.get() as u8;
                    len = i + 1;
                }

                client.received_buffer(rx_buf, len, return_code, uart::Error::None);
            });
        });
    }

    pub fn handle_interrupt(&self) {
        let regs = self.registers;
        let intrs = regs.intr_state.extract();

        if intrs.is_set(INTR::TX_EMPTY) {
            self.disable_tx_interrupt();

            if self.tx_index.get() == self.tx_len.get() {
                // We sent everything to the UART hardware, now from an
                // interrupt callback we can issue the callback.
                self.tx_client.map(|client| {
                    self.tx_buffer.take().map(|tx_buf| {
                        client.transmitted_buffer(tx_buf, self.tx_len.get(), Ok(()));
                    });
                });
            } else {
                // We have more to transmit, so continue in tx_progress().
                self.tx_progress();
            }
        } else if intrs.is_set(INTR::RX_WATERMARK) {
            self.disable_rx_interrupt();
            self.consume_rx();
        } else if intrs.is_set(INTR::RX_TIMEOUT) {
            self.disable_rx_interrupt();
            self.disable_rx_timeout();

            // On timeout return whatever is in the buffer to the client.
            self.rx_client.map(|client| {
                self.rx_buffer.take().map(|rx_buf| {
                    client.received_buffer(
                        rx_buf,
                        self.rx_index.get() + 1,
                        Err(kernel::ErrorCode::SIZE),
                        uart::Error::None,
                    );
                })
            });
        } else if intrs.is_set(INTR::TX_WATERMARK) {
            // TODO: Additional logic or notification related to the watermark.
        } else if intrs.is_set(INTR::RX_OVERFLOW) {
            self.disable_rx_interrupt();
            self.rx_client.map(|client| {
                self.rx_buffer.take().map(|rx_buf| {
                    client.received_buffer(
                        rx_buf,
                        self.rx_index.get(),
                        Err(kernel::ErrorCode::FAIL),
                        uart::Error::OverrunError,
                    );
                });
            });
        } else if intrs.is_set(INTR::RX_FRAME_ERR) {
            self.disable_rx_interrupt();
            self.rx_client.map(|client| {
                self.rx_buffer.take().map(|rx_buf| {
                    client.received_buffer(
                        rx_buf,
                        self.rx_index.get(),
                        Err(kernel::ErrorCode::FAIL),
                        uart::Error::FramingError,
                    );
                });
            });
        } else if intrs.is_set(INTR::RX_BREAK_ERR) {
            self.disable_rx_interrupt();
            self.rx_client.map(|client| {
                self.rx_buffer.take().map(|rx_buf| {
                    client.received_buffer(
                        rx_buf,
                        self.rx_index.get(),
                        Err(kernel::ErrorCode::FAIL),
                        uart::Error::BreakError,
                    );
                });
            });
        } else if intrs.is_set(INTR::RX_PARITY_ERR) {
            self.disable_rx_interrupt();
            self.rx_client.map(|client| {
                self.rx_buffer.take().map(|rx_buf| {
                    client.received_buffer(
                        rx_buf,
                        self.rx_index.get(),
                        Err(kernel::ErrorCode::FAIL),
                        uart::Error::ParityError,
                    );
                });
            });
        }
    }

    pub fn transmit_sync(&self, bytes: &[u8]) {
        let regs = self.registers;
        for b in bytes.iter() {
            while regs.status.is_set(STATUS::TXFULL) {}
            regs.wdata.write(WDATA::WDATA.val(*b as u32));
        }
    }
}

impl hil::uart::Configure for Uart<'_> {
    fn configure(&self, params: hil::uart::Parameters) -> Result<(), ErrorCode> {
        let regs = self.registers;
        // We can set the baud rate.
        self.set_baud_rate(params.baud_rate)?;

        match params.parity {
            uart::Parity::Even => regs
                .ctrl
                .modify(CTRL::PARITY_EN::SET + CTRL::PARITY_ODD::CLEAR),
            uart::Parity::Odd => regs
                .ctrl
                .modify(CTRL::PARITY_EN::SET + CTRL::PARITY_ODD::SET),
            uart::Parity::None => regs
                .ctrl
                .modify(CTRL::PARITY_EN::CLEAR + CTRL::PARITY_ODD::CLEAR),
        }

        regs.fifo_ctrl
            .write(FIFO_CTRL::RXRST::SET + FIFO_CTRL::TXRST::SET);

        // Disable all interrupts for now
        regs.intr_enable.set(0_u32);

        Ok(())
    }
}

impl<'a> hil::uart::Transmit<'a> for Uart<'a> {
    fn set_transmit_client(&self, client: &'a dyn hil::uart::TransmitClient) {
        self.tx_client.set(client);
    }

    fn transmit_buffer(
        &self,
        tx_data: &'static mut [u8],
        tx_len: usize,
    ) -> Result<(), (ErrorCode, &'static mut [u8])> {
        if tx_len == 0 || tx_len > tx_data.len() {
            Err((ErrorCode::SIZE, tx_data))
        } else if self.tx_buffer.is_some() {
            Err((ErrorCode::BUSY, tx_data))
        } else {
            // Save the buffer so we can keep sending it.
            self.tx_buffer.replace(tx_data);
            self.tx_len.set(tx_len);
            self.tx_index.set(0);

            self.tx_progress();
            Ok(())
        }
    }

    fn transmit_abort(&self) -> Result<(), ErrorCode> {
        Err(ErrorCode::FAIL)
    }

    fn transmit_word(&self, _word: u32) -> Result<(), ErrorCode> {
        Err(ErrorCode::FAIL)
    }
}

/* UART receive is not implemented yet, mostly due to a lack of tests avaliable */
impl<'a> hil::uart::Receive<'a> for Uart<'a> {
    fn set_receive_client(&self, client: &'a dyn hil::uart::ReceiveClient) {
        self.rx_client.set(client);
    }

    fn receive_buffer(
        &self,
        rx_buffer: &'static mut [u8],
        rx_len: usize,
    ) -> Result<(), (ErrorCode, &'static mut [u8])> {
        if rx_len == 0 || rx_len > rx_buffer.len() {
            return Err((ErrorCode::SIZE, rx_buffer));
        }

        self.enable_rx_interrupt();

        self.rx_buffer.replace(rx_buffer);
        self.rx_len.set(rx_len);
        self.rx_timeout.set(0);
        self.rx_index.set(0);

        Ok(())
    }

    fn receive_abort(&self) -> Result<(), ErrorCode> {
        Err(ErrorCode::FAIL)
    }

    fn receive_word(&self) -> Result<(), ErrorCode> {
        Err(ErrorCode::FAIL)
    }
}

impl<'a> hil::uart::ReceiveAdvanced<'a> for Uart<'a> {
    fn receive_automatic(
        &self,
        rx_buffer: &'static mut [u8],
        rx_len: usize,
        interbyte_timeout: u8,
    ) -> Result<(), (ErrorCode, &'static mut [u8])> {
        if rx_len == 0 || rx_len > rx_buffer.len() {
            return Err((ErrorCode::SIZE, rx_buffer));
        }

        self.rx_buffer.replace(rx_buffer);
        self.rx_len.set(rx_len);
        self.rx_timeout.set(interbyte_timeout);
        self.rx_index.set(0);

        Ok(())
    }
}

impl DeferredCallClient for Uart<'_> {
    fn handle_deferred_call(&self) {
        self.consume_rx();
    }

    fn register(&'static self) {
        self.rx_deferred_call.register(self);
    }
}

#[cfg(test)]
mod tests {
    use super::div_round_bounded;
    use kernel::ErrorCode;

    #[test]
    fn test_bounded_division() {
        const TEST_VECTORS: [(u64, u64, Result<u64, ErrorCode>); 10] = [
            (100, 4, Ok(25)),
            (41, 40, Ok(1)),
            (83, 40, Err(ErrorCode::INVAL)),
            (105, 40, Err(ErrorCode::INVAL)),
            (120, 40, Ok(3)),
            (121, 40, Ok(3)),
            (158, 40, Ok(4)),
            (159, 40, Ok(4)),
            (10, 3, Err(ErrorCode::INVAL)),
            (120_795_955_200, 6_000_000, Ok(20132)),
        ];
        for (a, b, expected) in &TEST_VECTORS {
            assert_eq!(div_round_bounded(*a, *b), *expected);
        }
    }
}