capsules_extra/net/sixlowpan/sixlowpan_compression.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
use crate::net::ieee802154::MacAddress;
use crate::net::ipv6::ip_utils::{compute_udp_checksum, ip6_nh, IPAddr};
use crate::net::ipv6::{IP6Header, IP6Packet, TransportHeader};
use crate::net::udp::UDPHeader;
use crate::net::util;
use crate::net::util::{network_slice_to_u16, u16_to_network_slice};
/// Implements the 6LoWPAN specification for sending IPv6 datagrams over
/// 802.15.4 packets efficiently, as detailed in RFC 6282.
use core::mem;
/// Contains bit masks and constants related to the two-byte header of the
/// LoWPAN_IPHC encoding format.
mod iphc {
pub const DISPATCH: [u8; 2] = [0x60, 0x00];
// First byte masks
pub const TF_TRAFFIC_CLASS: u8 = 0x08;
pub const TF_FLOW_LABEL: u8 = 0x10;
pub const NH: u8 = 0x04;
pub const HLIM_MASK: u8 = 0x03;
pub const HLIM_INLINE: u8 = 0x00;
pub const HLIM_1: u8 = 0x01;
pub const HLIM_64: u8 = 0x02;
pub const HLIM_255: u8 = 0x03;
// Second byte masks
pub const CID: u8 = 0x80;
pub const SAC: u8 = 0x40;
pub const SAM_MASK: u8 = 0x30;
pub const SAM_INLINE: u8 = 0x00;
pub const SAM_MODE1: u8 = 0x10;
pub const SAM_MODE2: u8 = 0x20;
pub const SAM_MODE3: u8 = 0x30;
pub const MULTICAST: u8 = 0x08;
pub const DAC: u8 = 0x04;
pub const DAM_MASK: u8 = 0x03;
pub const DAM_INLINE: u8 = 0x00;
pub const DAM_MODE1: u8 = 0x01;
pub const DAM_MODE2: u8 = 0x02;
pub const DAM_MODE3: u8 = 0x03;
// Address compression
pub const MAC_BASE: [u8; 8] = [0, 0, 0, 0xff, 0xfe, 0, 0, 0];
pub const MAC_UL: u8 = 0x02;
}
/// Contains bit masks and constants related to LoWPAN_NHC encoding,
/// including some specific to UDP header encoding
mod nhc {
pub const DISPATCH_NHC: u8 = 0xe0;
pub const DISPATCH_UDP: u8 = 0xf0;
pub const DISPATCH_MASK: u8 = 0xf0;
pub const EID_MASK: u8 = 0x0e;
pub const HOP_OPTS: u8 = 0 << 1;
pub const ROUTING: u8 = 1 << 1;
pub const FRAGMENT: u8 = 2 << 1;
pub const DST_OPTS: u8 = 3 << 1;
pub const MOBILITY: u8 = 4 << 1;
pub const IP6: u8 = 7 << 1;
pub const NH: u8 = 0x01;
// UDP header compression
pub const UDP_4BIT_PORT: u16 = 0xf0b0;
pub const UDP_4BIT_PORT_MASK: u16 = 0xfff0;
pub const UDP_8BIT_PORT: u16 = 0xf000;
pub const UDP_8BIT_PORT_MASK: u16 = 0xff00;
pub const UDP_CHECKSUM_FLAG: u8 = 0b100;
pub const UDP_SRC_PORT_FLAG: u8 = 0b010;
pub const UDP_DST_PORT_FLAG: u8 = 0b001;
pub const UDP_PORTS_SIZE: u16 = 4;
}
#[derive(Copy, Clone, Debug)]
pub struct Context {
pub prefix: [u8; 16],
pub prefix_len: u8,
pub id: u8,
pub compress: bool,
}
/// LoWPan ContextStore
///
/// LoWPAN encoding requires being able to look up the existence of contexts,
/// which are essentially IPv6 address prefixes. Any implementation must ensure
/// that context 0 is always available and contains the mesh-local prefix.
pub trait ContextStore {
fn get_context_from_addr(&self, ip_addr: IPAddr) -> Option<Context>;
fn get_context_from_id(&self, ctx_id: u8) -> Option<Context>;
fn get_context_0(&self) -> Context {
match self.get_context_from_id(0) {
Some(ctx) => ctx,
None => panic!("Context 0 not found"),
}
}
fn get_context_from_prefix(&self, prefix: &[u8], prefix_len: u8) -> Option<Context>;
}
/// Computes the LoWPAN Interface Identifier from either the 16-bit short MAC or
/// the IEEE EUI-64 that is derived from the 48-bit MAC.
pub fn compute_iid(mac_addr: &MacAddress) -> [u8; 8] {
match *mac_addr {
MacAddress::Short(short_addr) => {
// IID is 0000:00ff:fe00:XXXX, where XXXX is 16-bit MAC
let mut iid: [u8; 8] = iphc::MAC_BASE;
iid[6] = (short_addr >> 1) as u8;
iid[7] = (short_addr & 0xff) as u8;
iid
}
MacAddress::Long(long_addr) => {
// IID is IEEE EUI-64 with universal/local bit inverted
let mut iid: [u8; 8] = long_addr;
iid[0] ^= iphc::MAC_UL;
iid
}
}
}
impl ContextStore for Context {
fn get_context_from_addr(&self, ip_addr: IPAddr) -> Option<Context> {
if util::matches_prefix(&ip_addr.0, &self.prefix, self.prefix_len) {
Some(*self)
} else {
None
}
}
fn get_context_from_id(&self, ctx_id: u8) -> Option<Context> {
if ctx_id == 0 {
Some(*self)
} else {
None
}
}
fn get_context_from_prefix(&self, prefix: &[u8], prefix_len: u8) -> Option<Context> {
if prefix_len == self.prefix_len && util::matches_prefix(prefix, &self.prefix, prefix_len) {
Some(*self)
} else {
None
}
}
}
pub fn is_lowpan(packet: &[u8]) -> bool {
(packet[0] & iphc::DISPATCH[0]) == iphc::DISPATCH[0]
}
/// Maps a LoWPAN_NHC header the corresponding IPv6 next header type,
/// or an error if the NHC header is invalid
fn nhc_to_ip6_nh(nhc: u8) -> Result<u8, ()> {
match nhc & nhc::DISPATCH_MASK {
nhc::DISPATCH_NHC => match nhc & nhc::EID_MASK {
nhc::HOP_OPTS => Ok(ip6_nh::HOP_OPTS),
nhc::ROUTING => Ok(ip6_nh::ROUTING),
nhc::FRAGMENT => Ok(ip6_nh::FRAGMENT),
nhc::DST_OPTS => Ok(ip6_nh::DST_OPTS),
nhc::MOBILITY => Ok(ip6_nh::MOBILITY),
nhc::IP6 => Ok(ip6_nh::IP6),
_ => Err(()),
},
nhc::DISPATCH_UDP => Ok(ip6_nh::UDP),
_ => Err(()),
}
}
/// Compresses an IPv6 header into a 6loWPAN header
///
/// Constructs a 6LoWPAN header in `buf` from the given IPv6 datagram and
/// 16-bit MAC addresses. If the compression was successful, returns
/// `Ok((consumed, written))`, where `consumed` is the number of header
/// bytes consumed from the IPv6 datagram `written` is the number of
/// compressed header bytes written into `buf`. Payload bytes and
/// non-compressed next headers are not written, so the remaining `buf.len()
/// - consumed` bytes must still be copied over to `buf`.
pub fn compress<'a>(
ctx_store: &dyn ContextStore,
ip6_packet: &'a IP6Packet<'a>,
src_mac_addr: MacAddress,
dst_mac_addr: MacAddress,
buf: &mut [u8],
) -> Result<(usize, usize), ()> {
// Note that consumed should be constant, and equal sizeof(IP6Header)
//let (mut consumed, ip6_header) = IP6Header::decode(ip6_datagram).done().ok_or(())?;
let mut consumed = 40; // TODO
let ip6_header = ip6_packet.header;
//let mut next_headers: &[u8] = &ip6_datagram[consumed..];
// The first two bytes are the LOWPAN_IPHC header
let mut written: usize = 2;
// Initialize the LOWPAN_IPHC header
buf[0..2].copy_from_slice(&iphc::DISPATCH);
let mut src_ctx: Option<Context> = ctx_store.get_context_from_addr(ip6_header.src_addr);
let mut dst_ctx: Option<Context> = if ip6_header.dst_addr.is_multicast() {
let prefix_len: u8 = ip6_header.dst_addr.0[3];
let prefix: &[u8] = &ip6_header.dst_addr.0[4..12];
// This also implicitly verifies that prefix_len <= 64
if util::verify_prefix_len(prefix, prefix_len) {
ctx_store.get_context_from_prefix(prefix, prefix_len)
} else {
None
}
} else {
ctx_store.get_context_from_addr(ip6_header.dst_addr)
};
// Do not contexts that are not marked to be available for compression
src_ctx = src_ctx.and_then(|ctx| if ctx.compress { Some(ctx) } else { None });
dst_ctx = dst_ctx.and_then(|ctx| if ctx.compress { Some(ctx) } else { None });
// Context Identifier Extension
compress_cie(src_ctx.as_ref(), dst_ctx.as_ref(), buf, &mut written);
// Traffic Class & Flow Label
compress_tf(&ip6_header, buf, &mut written);
// Next Header
//let (mut is_nhc, mut nh_len): (bool, u8) = is_ip6_nh_compressible(ip6_packet)?;
let is_nhc = ip6_header.next_header == ip6_nh::UDP;
compress_nh(&ip6_header, is_nhc, buf, &mut written);
// Hop Limit
compress_hl(&ip6_header, buf, &mut written);
// Source Address
compress_src(
&ip6_header.src_addr,
&src_mac_addr,
src_ctx.as_ref(),
buf,
&mut written,
);
// Destination Address
if ip6_header.dst_addr.is_multicast() {
compress_multicast(&ip6_header.dst_addr, dst_ctx.as_ref(), buf, &mut written);
} else {
compress_dst(
&ip6_header.dst_addr,
&dst_mac_addr,
dst_ctx.as_ref(),
buf,
&mut written,
);
}
// Next Headers
// At each iteration, next_headers begins at the first byte of the
// current uncompressed next header.
// Since we aren't recursing, we only handle UDP
if is_nhc {
match ip6_packet.payload.header {
TransportHeader::UDP(udp_header) => {
let mut nhc_header = nhc::DISPATCH_UDP;
// Leave a space for the UDP LoWPAN_NHC byte
let udp_nh_offset = written;
written += 1;
// Compress ports and checksum
nhc_header |= compress_udp_ports(&udp_header, buf, &mut written);
nhc_header |= compress_udp_checksum(&udp_header, buf, &mut written);
// Write the UDP LoWPAN_NHC byte
buf[udp_nh_offset] = nhc_header;
consumed += 8;
}
// Return an error, as there is a conflict between IPv6 next
// header and actual IPv6 payload
_ => return Err(()),
}
}
Ok((consumed, written))
}
fn compress_cie(
src_ctx: Option<&Context>,
dst_ctx: Option<&Context>,
buf: &mut [u8],
written: &mut usize,
) {
let mut cie: u8 = 0;
src_ctx.as_ref().map(|ctx| {
if ctx.id != 0 {
cie |= ctx.id << 4;
}
});
dst_ctx.as_ref().map(|ctx| {
if ctx.id != 0 {
cie |= ctx.id;
}
});
if cie != 0 {
buf[1] |= iphc::CID;
buf[*written] = cie;
*written += 1;
}
}
fn compress_tf(ip6_header: &IP6Header, buf: &mut [u8], written: &mut usize) {
let ecn = ip6_header.get_ecn();
let dscp = ip6_header.get_dscp();
let flow = ip6_header.get_flow_label();
let mut tf_encoding = 0;
let old_offset = *written;
// If ECN != 0 we are forced to at least have one byte,
// otherwise we can elide dscp
if dscp == 0 && (ecn == 0 || flow != 0) {
tf_encoding |= iphc::TF_TRAFFIC_CLASS;
} else {
buf[*written] = dscp;
*written += 1;
}
// We can elide flow if it is 0
if flow == 0 {
tf_encoding |= iphc::TF_FLOW_LABEL;
} else {
buf[*written] = ((flow >> 16) & 0x0f) as u8;
buf[*written + 1] = (flow >> 8) as u8;
buf[*written + 2] = flow as u8;
*written += 3;
}
if *written != old_offset {
buf[old_offset] |= ecn << 6;
}
buf[0] |= tf_encoding;
}
fn compress_nh(ip6_header: &IP6Header, is_nhc: bool, buf: &mut [u8], written: &mut usize) {
if is_nhc {
buf[0] |= iphc::NH;
} else {
buf[*written] = ip6_header.next_header;
*written += 1;
}
}
fn compress_hl(ip6_header: &IP6Header, buf: &mut [u8], written: &mut usize) {
let hop_limit_flag = match ip6_header.hop_limit {
1 => iphc::HLIM_1,
64 => iphc::HLIM_64,
255 => iphc::HLIM_255,
_ => {
buf[*written] = ip6_header.hop_limit;
*written += 1;
iphc::HLIM_INLINE
}
};
buf[0] |= hop_limit_flag;
}
// TODO: We should check to see whether context or link local compression
// schemes gives the better compression; currently, we will always match
// on link local even if we could get better compression through context.
fn compress_src(
src_ip_addr: &IPAddr,
src_mac_addr: &MacAddress,
src_ctx: Option<&Context>,
buf: &mut [u8],
written: &mut usize,
) {
if src_ip_addr.is_unspecified() {
// SAC = 1, SAM = 00
buf[1] |= iphc::SAC;
} else if src_ip_addr.is_unicast_link_local() {
// SAC = 0, SAM = 01, 10, 11
compress_iid(src_ip_addr, src_mac_addr, true, buf, written);
} else if src_ctx.is_some() {
// SAC = 1, SAM = 01, 10, 11
buf[1] |= iphc::SAC;
compress_iid(src_ip_addr, src_mac_addr, true, buf, written);
} else {
// SAC = 0, SAM = 00
buf[*written..*written + 16].copy_from_slice(&src_ip_addr.0);
*written += 16;
}
}
// TODO: For the SAC = 0, SAM = 11 case in IPv6-encapsulated headers,
// it might be that we have to compute the IID from the encapsulating
// IPv6 header address instead of the EUI-64 from the 802.15.4 layer
fn compress_iid(
ip_addr: &IPAddr,
mac_addr: &MacAddress,
is_src: bool,
buf: &mut [u8],
written: &mut usize,
) {
let iid: [u8; 8] = compute_iid(mac_addr);
if ip_addr.0[8..16] == iid {
// SAM/DAM = 11, 0 bits
buf[1] |= if is_src {
iphc::SAM_MODE3
} else {
iphc::DAM_MODE3
};
} else if ip_addr.0[8..14] == iphc::MAC_BASE[0..6] {
// SAM/DAM = 10, 16 bits
buf[1] |= if is_src {
iphc::SAM_MODE2
} else {
iphc::DAM_MODE2
};
buf[*written..*written + 2].copy_from_slice(&ip_addr.0[14..16]);
*written += 2;
} else {
// SAM/DAM = 01, 64 bits
buf[1] |= if is_src {
iphc::SAM_MODE1
} else {
iphc::DAM_MODE1
};
buf[*written..*written + 8].copy_from_slice(&ip_addr.0[8..16]);
*written += 8;
}
}
// Compresses non-multicast destination address
// TODO: We should check to see whether context or link local compression
// schemes gives the better compression; currently, we will always match
// on link local even if we could get better compression through context.
fn compress_dst(
dst_ip_addr: &IPAddr,
dst_mac_addr: &MacAddress,
dst_ctx: Option<&Context>,
buf: &mut [u8],
written: &mut usize,
) {
// Assumes dst_ip_addr is not a multicast address (prefix ffXX)
if dst_ip_addr.is_unicast_link_local() {
// Link local compression
// M = 0, DAC = 0, DAM = 01, 10, 11
compress_iid(dst_ip_addr, dst_mac_addr, false, buf, written);
} else if dst_ctx.is_some() {
// Context compression
// DAC = 1, DAM = 01, 10, 11
buf[1] |= iphc::DAC;
compress_iid(dst_ip_addr, dst_mac_addr, false, buf, written);
} else {
// Full address inline
// DAC = 0, DAM = 00
buf[*written..*written + 16].copy_from_slice(&dst_ip_addr.0);
*written += 16;
}
}
// Compresses multicast destination addresses
fn compress_multicast(
dst_ip_addr: &IPAddr,
dst_ctx: Option<&Context>,
buf: &mut [u8],
written: &mut usize,
) {
// Assumes dst_ip_addr is indeed a multicast address (prefix ffXX)
buf[1] |= iphc::MULTICAST;
if dst_ctx.is_some() {
// M = 1, DAC = 1, DAM = 00
buf[1] |= iphc::DAC;
buf[*written..*written + 2].copy_from_slice(&dst_ip_addr.0[1..3]);
buf[*written + 2..*written + 6].copy_from_slice(&dst_ip_addr.0[12..16]);
*written += 6;
} else {
// M = 1, DAC = 0
if dst_ip_addr.0[1] == 0x02 && dst_ip_addr.0[2..15].iter().all(|&b| b == 0) {
// DAM = 11
buf[1] |= iphc::DAM_MODE3;
buf[*written] = dst_ip_addr.0[15];
*written += 1;
} else {
if !dst_ip_addr.0[2..11].iter().all(|&b| b == 0) {
// DAM = 00
buf[1] |= iphc::DAM_INLINE;
buf[*written..*written + 16].copy_from_slice(&dst_ip_addr.0);
*written += 16;
} else if !dst_ip_addr.0[11..13].iter().all(|&b| b == 0) {
// DAM = 01, ffXX::00XX:XXXX:XXXX
buf[1] |= iphc::DAM_MODE1;
buf[*written] = dst_ip_addr.0[1];
buf[*written + 1..*written + 6].copy_from_slice(&dst_ip_addr.0[11..16]);
*written += 6;
} else {
// DAM = 10, ffXX::00XX:XXXX
buf[1] |= iphc::DAM_MODE2;
buf[*written] = dst_ip_addr.0[1];
buf[*written + 1..*written + 4].copy_from_slice(&dst_ip_addr.0[13..16]);
*written += 4;
}
}
}
}
fn compress_udp_ports(udp_header: &UDPHeader, buf: &mut [u8], written: &mut usize) -> u8 {
// Need to deal with fields in network byte order when writing directly to buf
let src_port = udp_header.get_src_port().to_be();
let dst_port = udp_header.get_dst_port().to_be();
let mut udp_port_nhc = 0;
if (src_port & nhc::UDP_4BIT_PORT_MASK) == nhc::UDP_4BIT_PORT
&& (dst_port & nhc::UDP_4BIT_PORT_MASK) == nhc::UDP_4BIT_PORT
{
// Both can be compressed to 4 bits
udp_port_nhc |= nhc::UDP_SRC_PORT_FLAG | nhc::UDP_DST_PORT_FLAG;
// This should compress the ports to a single 8-bit value,
// with the source port before the destination port
buf[*written] = (((src_port & !nhc::UDP_4BIT_PORT_MASK) << 4)
| (dst_port & !nhc::UDP_4BIT_PORT_MASK)) as u8;
*written += 1;
} else if (src_port & nhc::UDP_8BIT_PORT_MASK) == nhc::UDP_8BIT_PORT {
// Source port compressed to 8 bits, destination port uncompressed
udp_port_nhc |= nhc::UDP_SRC_PORT_FLAG;
buf[*written] = (src_port & !nhc::UDP_8BIT_PORT_MASK) as u8;
u16_to_network_slice(dst_port.to_be(), &mut buf[*written + 1..*written + 3]);
*written += 3;
} else if (dst_port & nhc::UDP_8BIT_PORT_MASK) == nhc::UDP_8BIT_PORT {
udp_port_nhc |= nhc::UDP_DST_PORT_FLAG;
u16_to_network_slice(src_port.to_be(), &mut buf[*written..*written + 2]);
buf[*written + 3] = (dst_port & !nhc::UDP_8BIT_PORT_MASK) as u8;
*written += 3;
} else {
buf[*written] = src_port as u8;
buf[*written + 1] = (src_port >> 8) as u8;
buf[*written + 2] = dst_port as u8;
buf[*written + 3] = (dst_port >> 8) as u8;
//buf[*written..*written + 4].copy_from_slice(&udp_header[0..4]);
*written += 4;
}
udp_port_nhc
}
// NOTE: We currently only support (or intend to support) carrying the UDP
// checksum inline.
fn compress_udp_checksum(udp_header: &UDPHeader, buf: &mut [u8], written: &mut usize) -> u8 {
// get_cksum returns cksum in host byte order
let cksum = udp_header.get_cksum().to_be();
buf[*written] = cksum as u8;
buf[*written + 1] = (cksum >> 8) as u8;
*written += 2;
// Inline checksum corresponds to the 0 flag
0
}
/// Decompresses a 6loWPAN header into a full IPv6 header
///
/// This function decompresses the header found in `buf` and writes it
/// `out_buf`. It does not, though, copy payload bytes or a non-compressed next
/// header. As a result, the caller should copy the `buf.len - consumed`
/// remaining bytes from `buf` to `out_buf`.
///
///
/// Note that in the case of fragmentation, the total length of the IPv6
/// packet cannot be inferred from a single frame, and is instead provided
/// by the dgram_size field in the fragmentation header. Thus, if we are
/// decompressing a fragment, we rely on the dgram_size field; otherwise,
/// we infer the length from the size of buf.
///
/// # Arguments
///
/// * `ctx_store` - ???
///
/// * `buf` - A slice containing the 6LowPAN packet along with its payload.
///
/// * `src_mac_addr` - the 16-bit MAC address of the frame sender.
///
/// * `dst_mac_addr` - the 16-bit MAC address of the frame receiver.
///
/// * `out_buf` - A buffer to write the output to. Must be at least large enough
/// to store an IPv6 header (XX bytes).
///
/// * `dgram_size` - If `is_fragment` is `true`, this is used as the IPv6
/// packets total payload size. Otherwise, this is ignored.
///
/// * `is_fragment` - ???
///
/// # Returns
///
/// `Ok((consumed, written))` if decompression is successful.
///
/// * `consumed` is the number of header bytes consumed from the 6LoWPAN header
///
/// * `written` is the number of uncompressed header bytes written into
/// `out_buf`.
pub fn decompress(
ctx_store: &dyn ContextStore,
buf: &[u8],
src_mac_addr: MacAddress,
dst_mac_addr: MacAddress,
out_buf: &mut [u8],
dgram_size: u16,
is_fragment: bool,
) -> Result<(usize, usize), ()> {
// Get the LOWPAN_IPHC header (the first two bytes are the header)
let iphc_header_1: u8 = buf[0];
let iphc_header_2: u8 = buf[1];
let mut consumed: usize = 2;
let mut ip6_header = IP6Header::new();
let mut written: usize = mem::size_of::<IP6Header>();
// Decompress CID and CIE fields if they exist
let (src_ctx, dst_ctx) = decompress_cie(ctx_store, iphc_header_1, buf, &mut consumed)?;
// Traffic Class & Flow Label
decompress_tf(&mut ip6_header, iphc_header_1, buf, &mut consumed);
// Next Header
let (mut is_nhc, mut next_header) = decompress_nh(iphc_header_1, buf, &mut consumed);
// Hop Limit
decompress_hl(&mut ip6_header, iphc_header_1, buf, &mut consumed)?;
// Source Address
decompress_src(
&mut ip6_header,
iphc_header_2,
&src_mac_addr,
&src_ctx,
buf,
&mut consumed,
)?;
// Destination Address
if (iphc_header_2 & iphc::MULTICAST) != 0 {
decompress_multicast(&mut ip6_header, iphc_header_2, &dst_ctx, buf, &mut consumed)?;
} else {
decompress_dst(
&mut ip6_header,
iphc_header_2,
&dst_mac_addr,
&dst_ctx,
buf,
&mut consumed,
)?;
}
// next_header is already set if is_nhc is false, otherwise it can be
// determined from the LoWPAN NHC header byte
if is_nhc {
next_header = nhc_to_ip6_nh(buf[consumed])?;
}
ip6_header.set_next_header(next_header);
// Next headers after the IPv6 fixed header
// At each iteration, consumed points to the first byte of the compressed
// next header in buf.
while is_nhc {
// Advance past the LoWPAN NHC byte
let nhc_header = buf[consumed];
consumed += 1;
// Scoped mutable borrow of out_buf
let next_headers: &mut [u8] = &mut out_buf[written..];
match next_header {
ip6_nh::IP6 => {
let (encap_consumed, encap_written) = decompress(
ctx_store,
&buf[consumed..],
src_mac_addr,
dst_mac_addr,
next_headers,
dgram_size,
is_fragment,
)?;
consumed += encap_consumed;
written += encap_written;
break;
}
ip6_nh::UDP => {
// UDP length includes UDP header and data in bytes
// Below line works bc udp nh must be last nh per 6282
let mut udp_length = if is_fragment {
dgram_size - written as u16
} else {
buf.len() as u16 - consumed as u16
};
// Decompress UDP header fields
let consumed_before_port_decompress = consumed;
let (src_port, dst_port) = decompress_udp_ports(nhc_header, buf, &mut consumed);
//need to add any growth from decompression to the udp length if we used the buf
//len to calculate the length
if !is_fragment {
// Expansion from port compression
udp_length +=
nhc::UDP_PORTS_SIZE - ((consumed - consumed_before_port_decompress) as u16);
// Expansion from length elision (always applied per RFC 6282, length is 2
// bytes)
udp_length += 2;
// UDP checksum elision
if (nhc_header & nhc::UDP_CHECKSUM_FLAG) != 0 {
udp_length += 2;
}
}
// Fill in uncompressed UDP header
// TODO: The current implementation works, but I don't understand the calls to
// to_be(), because src_port.to_be() returns the src_port in little endian..
// Accordingly, the udp_length must also be written in little endian for this
// to work.
u16_to_network_slice(src_port.to_be(), &mut next_headers[0..2]);
u16_to_network_slice(dst_port.to_be(), &mut next_headers[2..4]);
u16_to_network_slice(udp_length, &mut next_headers[4..6]);
// Need to fill in header values before computing the checksum
let udp_checksum = decompress_udp_checksum(
nhc_header,
&next_headers[0..8],
udp_length,
&ip6_header,
buf,
&mut consumed,
is_fragment,
);
u16_to_network_slice(udp_checksum.to_be(), &mut next_headers[6..8]);
written += 8;
break;
}
ip6_nh::FRAGMENT
| ip6_nh::HOP_OPTS
| ip6_nh::ROUTING
| ip6_nh::DST_OPTS
| ip6_nh::MOBILITY => {
// True if the next header is also compressed
is_nhc = (nhc_header & nhc::NH) != 0;
// len is the number of octets following the length field
let len = buf[consumed] as usize;
consumed += 1;
// Check that there is a next header in the buffer,
// which must be the case if the last next header specifies
// NH = 1
if consumed + len >= buf.len() {
return Err(());
}
// Length in 8-octet units after the first 8 octets
// (per the IPv6 ext hdr spec)
let mut hdr_len_field = (len - 6) / 8;
if (len - 6) % 8 != 0 {
hdr_len_field += 1;
}
// Gets the type of the subsequent next header. If is_nhc
// is true, there must be a LoWPAN NHC header byte,
// otherwise there is either an uncompressed next header.
next_header = if is_nhc {
// The next header is LoWPAN NHC-compressed
nhc_to_ip6_nh(buf[consumed + len])?
} else {
// The next header is uncompressed
buf[consumed + len]
};
// Fill in the extended header in uncompressed IPv6 format
next_headers[0] = next_header;
next_headers[1] = hdr_len_field as u8;
// Copies over the remaining options.
next_headers[2..2 + len].copy_from_slice(&buf[consumed..consumed + len]);
// Fill in padding
let pad_bytes = hdr_len_field * 8 - len + 6;
if pad_bytes == 1 {
// Pad1
next_headers[2 + len] = 0;
} else {
// PadN, 2 <= pad_bytes <= 7
next_headers[2 + len] = 1;
next_headers[2 + len + 1] = pad_bytes as u8 - 2;
for i in 2..pad_bytes {
next_headers[2 + len + i] = 0;
}
}
written += 8 + hdr_len_field * 8;
consumed += len;
}
_ => panic!("Unreachable case"),
}
}
// The IPv6 header length field is the size of the IPv6 payload,
// including extension headers. This is thus the uncompressed
// size of the IPv6 packet - the fixed IPv6 header.
let payload_len = if is_fragment {
(dgram_size as usize) - mem::size_of::<IP6Header>()
} else {
written + (buf.len() - consumed) - mem::size_of::<IP6Header>()
};
ip6_header.payload_len = (payload_len as u16).to_be();
IP6Header::encode(&ip6_header, out_buf).done().ok_or(())?;
Ok((consumed, written))
}
fn decompress_cie(
ctx_store: &dyn ContextStore,
iphc_header: u8,
buf: &[u8],
consumed: &mut usize,
) -> Result<(Context, Context), ()> {
let ctx_0 = ctx_store.get_context_0();
let (mut src_ctx, mut dst_ctx) = (ctx_0, ctx_0);
if iphc_header & iphc::CID != 0 {
let sci = buf[*consumed] >> 4;
let dci = buf[*consumed] & 0xf;
*consumed += 1;
if sci != 0 {
src_ctx = ctx_store.get_context_from_id(sci).ok_or(())?;
}
if dci != 0 {
dst_ctx = ctx_store.get_context_from_id(dci).ok_or(())?;
}
}
Ok((src_ctx, dst_ctx))
}
fn decompress_tf(ip6_header: &mut IP6Header, iphc_header: u8, buf: &[u8], consumed: &mut usize) {
let fl_compressed = (iphc_header & iphc::TF_FLOW_LABEL) != 0;
let tc_compressed = (iphc_header & iphc::TF_TRAFFIC_CLASS) != 0;
// Determine ECN and DSCP separately because the order is different
// from the IPv6 traffic class field.
if !fl_compressed || !tc_compressed {
let ecn = buf[*consumed] >> 6;
ip6_header.set_ecn(ecn);
}
if !tc_compressed {
let dscp = buf[*consumed] & 0b111111;
ip6_header.set_dscp(dscp);
*consumed += 1;
}
// Flow label is always in the same bit position relative to the last
// three bytes in the inline fields
if fl_compressed {
ip6_header.set_flow_label(0);
} else {
let flow = (((buf[*consumed] & 0x0f) as u32) << 16)
| ((buf[*consumed + 1] as u32) << 8)
| (buf[*consumed + 2] as u32);
*consumed += 3;
ip6_header.set_flow_label(flow);
}
}
fn decompress_nh(iphc_header: u8, buf: &[u8], consumed: &mut usize) -> (bool, u8) {
let is_nhc = (iphc_header & iphc::NH) != 0;
let mut next_header: u8 = 0;
if !is_nhc {
next_header = buf[*consumed];
*consumed += 1;
}
(is_nhc, next_header)
}
fn decompress_hl(
ip6_header: &mut IP6Header,
iphc_header: u8,
buf: &[u8],
consumed: &mut usize,
) -> Result<(), ()> {
let hop_limit = match iphc_header & iphc::HLIM_MASK {
iphc::HLIM_1 => 1,
iphc::HLIM_64 => 64,
iphc::HLIM_255 => 255,
iphc::HLIM_INLINE => {
let hl = buf[*consumed];
*consumed += 1;
hl
}
_ => panic!("Unreachable case"),
};
ip6_header.set_hop_limit(hop_limit);
Ok(())
}
fn decompress_src(
ip6_header: &mut IP6Header,
iphc_header: u8,
mac_addr: &MacAddress,
ctx: &Context,
buf: &[u8],
consumed: &mut usize,
) -> Result<(), ()> {
let uses_context = (iphc_header & iphc::SAC) != 0;
let sam_mode = iphc_header & iphc::SAM_MASK;
if uses_context && sam_mode == iphc::SAM_INLINE {
// SAC = 1, SAM = 00: UNSPECIFIED (::), which is already the default
} else if uses_context {
// SAC = 1, SAM = 01, 10, 11
decompress_iid_context(
sam_mode,
&mut ip6_header.src_addr,
mac_addr,
ctx,
buf,
consumed,
)?;
} else {
// SAC = 0, SAM = 00, 01, 10, 11
decompress_iid_link_local(sam_mode, &mut ip6_header.src_addr, mac_addr, buf, consumed)?;
}
Ok(())
}
fn decompress_dst(
ip6_header: &mut IP6Header,
iphc_header: u8,
mac_addr: &MacAddress,
ctx: &Context,
buf: &[u8],
consumed: &mut usize,
) -> Result<(), ()> {
let uses_context = (iphc_header & iphc::DAC) != 0;
let dam_mode = iphc_header & iphc::DAM_MASK;
if uses_context && dam_mode == iphc::DAM_INLINE {
// DAC = 1, DAM = 00: Reserved
return Err(());
} else if uses_context {
// DAC = 1, DAM = 01, 10, 11
decompress_iid_context(
dam_mode,
&mut ip6_header.dst_addr,
mac_addr,
ctx,
buf,
consumed,
)?;
} else {
// DAC = 0, DAM = 00, 01, 10, 11
decompress_iid_link_local(dam_mode, &mut ip6_header.dst_addr, mac_addr, buf, consumed)?;
}
Ok(())
}
fn decompress_multicast(
ip6_header: &mut IP6Header,
iphc_header: u8,
ctx: &Context,
buf: &[u8],
consumed: &mut usize,
) -> Result<(), ()> {
let uses_context = (iphc_header & iphc::DAC) != 0;
let dam_mode = iphc_header & iphc::DAM_MASK;
let ip_addr: &mut IPAddr = &mut ip6_header.dst_addr;
if uses_context {
match dam_mode {
iphc::DAM_INLINE => {
// DAC = 1, DAM = 00: 48 bits
// ffXX:XXLL:PPPP:PPPP:PPPP:PPPP:XXXX:XXXX
let prefix_bytes = ((ctx.prefix_len + 7) / 8) as usize;
if prefix_bytes > 8 {
// The maximum prefix length for this mode is 64 bits.
// If the specified prefix exceeds this length, the
// compression is invalid.
return Err(());
}
ip_addr.0[0] = 0xff;
ip_addr.0[1] = buf[*consumed];
ip_addr.0[2] = buf[*consumed + 1];
ip_addr.0[3] = ctx.prefix_len;
ip_addr.0[4..4 + prefix_bytes].copy_from_slice(&ctx.prefix[0..prefix_bytes]);
ip_addr.0[12..16].copy_from_slice(&buf[*consumed + 2..*consumed + 6]);
*consumed += 6;
}
_ => {
// DAC = 1, DAM = 01, 10, 11: Reserved
return Err(());
}
}
} else {
match dam_mode {
// DAC = 0, DAM = 00: Inline
iphc::DAM_INLINE => {
ip_addr.0.copy_from_slice(&buf[*consumed..*consumed + 16]);
*consumed += 16;
}
// DAC = 0, DAM = 01: 48 bits
// ffXX::00XX:XXXX:XXXX
iphc::DAM_MODE1 => {
ip_addr.0[0] = 0xff;
ip_addr.0[1] = buf[*consumed];
*consumed += 1;
ip_addr.0[11..16].copy_from_slice(&buf[*consumed..*consumed + 5]);
*consumed += 5;
}
// DAC = 0, DAM = 10: 32 bits
// ffXX::00XX:XXXX
iphc::DAM_MODE2 => {
ip_addr.0[0] = 0xff;
ip_addr.0[1] = buf[*consumed];
*consumed += 1;
ip_addr.0[13..16].copy_from_slice(&buf[*consumed..*consumed + 3]);
*consumed += 3;
}
// DAC = 0, DAM = 11: 8 bits
// ff02::00XX
iphc::DAM_MODE3 => {
ip_addr.0[0] = 0xff;
ip_addr.0[1] = 0x02;
ip_addr.0[15] = buf[*consumed];
*consumed += 1;
}
_ => panic!("Unreachable case"),
}
}
Ok(())
}
fn decompress_iid_link_local(
addr_mode: u8,
ip_addr: &mut IPAddr,
mac_addr: &MacAddress,
buf: &[u8],
consumed: &mut usize,
) -> Result<(), ()> {
let mode = addr_mode & (iphc::SAM_MASK | iphc::DAM_MASK);
match mode {
// SAM, DAM = 00: Inline
iphc::SAM_INLINE => {
// SAM_INLINE is equivalent to DAM_INLINE
ip_addr.0.copy_from_slice(&buf[*consumed..*consumed + 16]);
*consumed += 16;
}
// SAM, DAM = 01: 64 bits
// Link-local prefix (64 bits) + 64 bits carried inline
iphc::SAM_MODE1 | iphc::DAM_MODE1 => {
ip_addr.set_unicast_link_local();
ip_addr.0[8..16].copy_from_slice(&buf[*consumed..*consumed + 8]);
*consumed += 8;
}
// SAM, DAM = 11: 16 bits
// Link-local prefix (112 bits) + 0000:00ff:fe00:XXXX
iphc::SAM_MODE2 | iphc::DAM_MODE2 => {
ip_addr.set_unicast_link_local();
ip_addr.0[11..13].copy_from_slice(&iphc::MAC_BASE[3..5]);
ip_addr.0[14..16].copy_from_slice(&buf[*consumed..*consumed + 2]);
*consumed += 2;
}
// SAM, DAM = 11: 0 bits
// Linx-local prefix (64 bits) + IID from outer header (64 bits)
iphc::SAM_MODE3 | iphc::DAM_MODE3 => {
ip_addr.set_unicast_link_local();
ip_addr.0[8..16].copy_from_slice(&compute_iid(mac_addr));
}
_ => panic!("Unreachable case"),
}
Ok(())
}
fn decompress_iid_context(
addr_mode: u8,
ip_addr: &mut IPAddr,
mac_addr: &MacAddress,
ctx: &Context,
buf: &[u8],
consumed: &mut usize,
) -> Result<(), ()> {
let mode = addr_mode & (iphc::SAM_MASK | iphc::DAM_MASK);
match mode {
// DAM = 00: Reserved
// SAM = 0 is handled separately outside this method
iphc::DAM_INLINE => {
return Err(());
}
// SAM, DAM = 01: 64 bits
// Suffix is the 64 bits carried inline
iphc::SAM_MODE1 | iphc::DAM_MODE1 => {
ip_addr.0[8..16].copy_from_slice(&buf[*consumed..*consumed + 8]);
*consumed += 8;
}
// SAM, DAM = 10: 16 bits
// Suffix is 0000:00ff:fe00:XXXX
iphc::SAM_MODE2 | iphc::DAM_MODE2 => {
ip_addr.0[8..16].copy_from_slice(&iphc::MAC_BASE);
ip_addr.0[14..16].copy_from_slice(&buf[*consumed..*consumed + 2]);
*consumed += 2;
}
// SAM, DAM = 11: 0 bits
// Suffix is the IID computed from the encapsulating header
iphc::SAM_MODE3 | iphc::DAM_MODE3 => {
let iid = compute_iid(mac_addr);
ip_addr.0[8..16].copy_from_slice(&iid[0..8]);
}
_ => panic!("Unreachable case"),
}
// The bits covered by the provided context are always used, so we copy
// the context bits into the address after the non-context bits are set.
ip_addr.set_prefix(&ctx.prefix, ctx.prefix_len);
Ok(())
}
// Returns the UDP ports in host byte-order
fn decompress_udp_ports(udp_nhc: u8, buf: &[u8], consumed: &mut usize) -> (u16, u16) {
let src_compressed = (udp_nhc & nhc::UDP_SRC_PORT_FLAG) != 0;
let dst_compressed = (udp_nhc & nhc::UDP_DST_PORT_FLAG) != 0;
let src_port;
let dst_port;
if src_compressed && dst_compressed {
// Both src and dst are compressed to 4 bits
let src_short = ((buf[*consumed] >> 4) & 0xf) as u16;
let dst_short = (buf[*consumed] & 0xf) as u16;
src_port = nhc::UDP_4BIT_PORT | src_short;
dst_port = nhc::UDP_4BIT_PORT | dst_short;
*consumed += 1;
} else if src_compressed {
// Source port is compressed to 8 bits
src_port = nhc::UDP_8BIT_PORT | (buf[*consumed] as u16);
// Destination port is uncompressed
dst_port = u16::from_be(network_slice_to_u16(&buf[*consumed + 1..*consumed + 3]));
*consumed += 3;
} else if dst_compressed {
// Source port is uncompressed
src_port = u16::from_be(network_slice_to_u16(&buf[*consumed..*consumed + 2]));
// Destination port is compressed to 8 bits
dst_port = nhc::UDP_8BIT_PORT | (buf[*consumed + 2] as u16);
*consumed += 3;
} else {
// Both ports are uncompressed
src_port = u16::from_be(network_slice_to_u16(&buf[*consumed..*consumed + 2]));
dst_port = u16::from_be(network_slice_to_u16(&buf[*consumed + 2..*consumed + 4]));
*consumed += 4;
}
(src_port, dst_port)
}
// Returns the UDP checksum in host byte-order
fn decompress_udp_checksum(
udp_nhc: u8,
udp_header: &[u8],
udp_length: u16,
ip6_header: &IP6Header,
buf: &[u8],
consumed: &mut usize,
is_fragment: bool,
) -> u16 {
// TODO: In keeping with Postel's Law, we accept UDP packets that elide the
// checksum (per RFC 6282). We are not sure if we should continue to support
// this feature however.
// Also, this implementation currently does not work for multi-frame packets,
// as decompress is called on the first frame before the others arrive.
if (udp_nhc & nhc::UDP_CHECKSUM_FLAG) != 0 && !is_fragment {
let mut udp_header_copy: [u8; 8] = [0, 0, 0, 0, 0, 0, 0, 0];
udp_header_copy.copy_from_slice(udp_header);
match UDPHeader::decode(&udp_header_copy).done() {
Some((_offset, hdr)) => u16::from_be(compute_udp_checksum(
ip6_header,
&hdr,
udp_length,
&buf[*consumed..],
)),
None => 0, //Will be dropped by IP layer
}
} else {
let checksum = u16::from_be(network_slice_to_u16(&buf[*consumed..*consumed + 2]));
*consumed += 2;
checksum
}
}