capsules_extra/net/sixlowpan/
sixlowpan_compression.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

use crate::net::ieee802154::MacAddress;
use crate::net::ipv6::ip_utils::{compute_udp_checksum, ip6_nh, IPAddr};
use crate::net::ipv6::{IP6Header, IP6Packet, TransportHeader};
use crate::net::udp::UDPHeader;
use crate::net::util;
use crate::net::util::{network_slice_to_u16, u16_to_network_slice};
/// Implements the 6LoWPAN specification for sending IPv6 datagrams over
/// 802.15.4 packets efficiently, as detailed in RFC 6282.
use core::mem;

/// Contains bit masks and constants related to the two-byte header of the
/// LoWPAN_IPHC encoding format.
mod iphc {
    pub const DISPATCH: [u8; 2] = [0x60, 0x00];

    // First byte masks

    pub const TF_TRAFFIC_CLASS: u8 = 0x08;
    pub const TF_FLOW_LABEL: u8 = 0x10;

    pub const NH: u8 = 0x04;

    pub const HLIM_MASK: u8 = 0x03;
    pub const HLIM_INLINE: u8 = 0x00;
    pub const HLIM_1: u8 = 0x01;
    pub const HLIM_64: u8 = 0x02;
    pub const HLIM_255: u8 = 0x03;

    // Second byte masks

    pub const CID: u8 = 0x80;

    pub const SAC: u8 = 0x40;

    pub const SAM_MASK: u8 = 0x30;
    pub const SAM_INLINE: u8 = 0x00;
    pub const SAM_MODE1: u8 = 0x10;
    pub const SAM_MODE2: u8 = 0x20;
    pub const SAM_MODE3: u8 = 0x30;

    pub const MULTICAST: u8 = 0x08;

    pub const DAC: u8 = 0x04;
    pub const DAM_MASK: u8 = 0x03;
    pub const DAM_INLINE: u8 = 0x00;
    pub const DAM_MODE1: u8 = 0x01;
    pub const DAM_MODE2: u8 = 0x02;
    pub const DAM_MODE3: u8 = 0x03;

    // Address compression
    pub const MAC_BASE: [u8; 8] = [0, 0, 0, 0xff, 0xfe, 0, 0, 0];
    pub const MAC_UL: u8 = 0x02;
}

/// Contains bit masks and constants related to LoWPAN_NHC encoding,
/// including some specific to UDP header encoding
mod nhc {
    pub const DISPATCH_NHC: u8 = 0xe0;
    pub const DISPATCH_UDP: u8 = 0xf0;
    pub const DISPATCH_MASK: u8 = 0xf0;

    pub const EID_MASK: u8 = 0x0e;
    pub const HOP_OPTS: u8 = 0 << 1;
    pub const ROUTING: u8 = 1 << 1;
    pub const FRAGMENT: u8 = 2 << 1;
    pub const DST_OPTS: u8 = 3 << 1;
    pub const MOBILITY: u8 = 4 << 1;
    pub const IP6: u8 = 7 << 1;

    pub const NH: u8 = 0x01;

    // UDP header compression

    pub const UDP_4BIT_PORT: u16 = 0xf0b0;
    pub const UDP_4BIT_PORT_MASK: u16 = 0xfff0;
    pub const UDP_8BIT_PORT: u16 = 0xf000;
    pub const UDP_8BIT_PORT_MASK: u16 = 0xff00;

    pub const UDP_CHECKSUM_FLAG: u8 = 0b100;
    pub const UDP_SRC_PORT_FLAG: u8 = 0b010;
    pub const UDP_DST_PORT_FLAG: u8 = 0b001;
    pub const UDP_PORTS_SIZE: u16 = 4;
}

#[derive(Copy, Clone, Debug)]
pub struct Context {
    pub prefix: [u8; 16],
    pub prefix_len: u8,
    pub id: u8,
    pub compress: bool,
}

/// LoWPan ContextStore
///
/// LoWPAN encoding requires being able to look up the existence of contexts,
/// which are essentially IPv6 address prefixes. Any implementation must ensure
/// that context 0 is always available and contains the mesh-local prefix.
pub trait ContextStore {
    fn get_context_from_addr(&self, ip_addr: IPAddr) -> Option<Context>;
    fn get_context_from_id(&self, ctx_id: u8) -> Option<Context>;
    fn get_context_0(&self) -> Context {
        match self.get_context_from_id(0) {
            Some(ctx) => ctx,
            None => panic!("Context 0 not found"),
        }
    }
    fn get_context_from_prefix(&self, prefix: &[u8], prefix_len: u8) -> Option<Context>;
}

/// Computes the LoWPAN Interface Identifier from either the 16-bit short MAC or
/// the IEEE EUI-64 that is derived from the 48-bit MAC.
pub fn compute_iid(mac_addr: &MacAddress) -> [u8; 8] {
    match *mac_addr {
        MacAddress::Short(short_addr) => {
            // IID is 0000:00ff:fe00:XXXX, where XXXX is 16-bit MAC
            let mut iid: [u8; 8] = iphc::MAC_BASE;
            iid[6] = (short_addr >> 1) as u8;
            iid[7] = (short_addr & 0xff) as u8;
            iid
        }
        MacAddress::Long(long_addr) => {
            // IID is IEEE EUI-64 with universal/local bit inverted
            let mut iid: [u8; 8] = long_addr;
            iid[0] ^= iphc::MAC_UL;
            iid
        }
    }
}

impl ContextStore for Context {
    fn get_context_from_addr(&self, ip_addr: IPAddr) -> Option<Context> {
        if util::matches_prefix(&ip_addr.0, &self.prefix, self.prefix_len) {
            Some(*self)
        } else {
            None
        }
    }

    fn get_context_from_id(&self, ctx_id: u8) -> Option<Context> {
        if ctx_id == 0 {
            Some(*self)
        } else {
            None
        }
    }

    fn get_context_from_prefix(&self, prefix: &[u8], prefix_len: u8) -> Option<Context> {
        if prefix_len == self.prefix_len && util::matches_prefix(prefix, &self.prefix, prefix_len) {
            Some(*self)
        } else {
            None
        }
    }
}

pub fn is_lowpan(packet: &[u8]) -> bool {
    (packet[0] & iphc::DISPATCH[0]) == iphc::DISPATCH[0]
}

/// Maps a LoWPAN_NHC header the corresponding IPv6 next header type,
/// or an error if the NHC header is invalid
fn nhc_to_ip6_nh(nhc: u8) -> Result<u8, ()> {
    match nhc & nhc::DISPATCH_MASK {
        nhc::DISPATCH_NHC => match nhc & nhc::EID_MASK {
            nhc::HOP_OPTS => Ok(ip6_nh::HOP_OPTS),
            nhc::ROUTING => Ok(ip6_nh::ROUTING),
            nhc::FRAGMENT => Ok(ip6_nh::FRAGMENT),
            nhc::DST_OPTS => Ok(ip6_nh::DST_OPTS),
            nhc::MOBILITY => Ok(ip6_nh::MOBILITY),
            nhc::IP6 => Ok(ip6_nh::IP6),
            _ => Err(()),
        },
        nhc::DISPATCH_UDP => Ok(ip6_nh::UDP),
        _ => Err(()),
    }
}

/// Compresses an IPv6 header into a 6loWPAN header
///
/// Constructs a 6LoWPAN header in `buf` from the given IPv6 datagram and
/// 16-bit MAC addresses. If the compression was successful, returns
/// `Ok((consumed, written))`, where `consumed` is the number of header
/// bytes consumed from the IPv6 datagram `written` is the number of
/// compressed header bytes written into `buf`. Payload bytes and
/// non-compressed next headers are not written, so the remaining `buf.len()
/// - consumed` bytes must still be copied over to `buf`.
pub fn compress<'a>(
    ctx_store: &dyn ContextStore,
    ip6_packet: &'a IP6Packet<'a>,
    src_mac_addr: MacAddress,
    dst_mac_addr: MacAddress,
    buf: &mut [u8],
) -> Result<(usize, usize), ()> {
    // Note that consumed should be constant, and equal sizeof(IP6Header)
    //let (mut consumed, ip6_header) = IP6Header::decode(ip6_datagram).done().ok_or(())?;
    let mut consumed = 40; // TODO
    let ip6_header = ip6_packet.header;

    //let mut next_headers: &[u8] = &ip6_datagram[consumed..];

    // The first two bytes are the LOWPAN_IPHC header
    let mut written: usize = 2;

    // Initialize the LOWPAN_IPHC header
    buf[0..2].copy_from_slice(&iphc::DISPATCH);

    let mut src_ctx: Option<Context> = ctx_store.get_context_from_addr(ip6_header.src_addr);
    let mut dst_ctx: Option<Context> = if ip6_header.dst_addr.is_multicast() {
        let prefix_len: u8 = ip6_header.dst_addr.0[3];
        let prefix: &[u8] = &ip6_header.dst_addr.0[4..12];
        // This also implicitly verifies that prefix_len <= 64
        if util::verify_prefix_len(prefix, prefix_len) {
            ctx_store.get_context_from_prefix(prefix, prefix_len)
        } else {
            None
        }
    } else {
        ctx_store.get_context_from_addr(ip6_header.dst_addr)
    };

    // Do not contexts that are not marked to be available for compression
    src_ctx = src_ctx.and_then(|ctx| if ctx.compress { Some(ctx) } else { None });
    dst_ctx = dst_ctx.and_then(|ctx| if ctx.compress { Some(ctx) } else { None });

    // Context Identifier Extension
    compress_cie(src_ctx.as_ref(), dst_ctx.as_ref(), buf, &mut written);

    // Traffic Class & Flow Label
    compress_tf(&ip6_header, buf, &mut written);

    // Next Header

    //let (mut is_nhc, mut nh_len): (bool, u8) = is_ip6_nh_compressible(ip6_packet)?;
    let is_nhc = ip6_header.next_header == ip6_nh::UDP;
    compress_nh(&ip6_header, is_nhc, buf, &mut written);

    // Hop Limit
    compress_hl(&ip6_header, buf, &mut written);

    // Source Address
    compress_src(
        &ip6_header.src_addr,
        &src_mac_addr,
        src_ctx.as_ref(),
        buf,
        &mut written,
    );

    // Destination Address
    if ip6_header.dst_addr.is_multicast() {
        compress_multicast(&ip6_header.dst_addr, dst_ctx.as_ref(), buf, &mut written);
    } else {
        compress_dst(
            &ip6_header.dst_addr,
            &dst_mac_addr,
            dst_ctx.as_ref(),
            buf,
            &mut written,
        );
    }

    // Next Headers
    // At each iteration, next_headers begins at the first byte of the
    // current uncompressed next header.
    // Since we aren't recursing, we only handle UDP
    if is_nhc {
        match ip6_packet.payload.header {
            TransportHeader::UDP(udp_header) => {
                let mut nhc_header = nhc::DISPATCH_UDP;

                // Leave a space for the UDP LoWPAN_NHC byte
                let udp_nh_offset = written;
                written += 1;

                // Compress ports and checksum
                nhc_header |= compress_udp_ports(&udp_header, buf, &mut written);
                nhc_header |= compress_udp_checksum(&udp_header, buf, &mut written);

                // Write the UDP LoWPAN_NHC byte
                buf[udp_nh_offset] = nhc_header;
                consumed += 8;
            }
            // Return an error, as there is a conflict between IPv6 next
            // header and actual IPv6 payload
            _ => return Err(()),
        }
    }
    Ok((consumed, written))
}

fn compress_cie(
    src_ctx: Option<&Context>,
    dst_ctx: Option<&Context>,
    buf: &mut [u8],
    written: &mut usize,
) {
    let mut cie: u8 = 0;

    src_ctx.as_ref().map(|ctx| {
        if ctx.id != 0 {
            cie |= ctx.id << 4;
        }
    });
    dst_ctx.as_ref().map(|ctx| {
        if ctx.id != 0 {
            cie |= ctx.id;
        }
    });

    if cie != 0 {
        buf[1] |= iphc::CID;
        buf[*written] = cie;
        *written += 1;
    }
}

fn compress_tf(ip6_header: &IP6Header, buf: &mut [u8], written: &mut usize) {
    let ecn = ip6_header.get_ecn();
    let dscp = ip6_header.get_dscp();
    let flow = ip6_header.get_flow_label();

    let mut tf_encoding = 0;
    let old_offset = *written;

    // If ECN != 0 we are forced to at least have one byte,
    // otherwise we can elide dscp
    if dscp == 0 && (ecn == 0 || flow != 0) {
        tf_encoding |= iphc::TF_TRAFFIC_CLASS;
    } else {
        buf[*written] = dscp;
        *written += 1;
    }

    // We can elide flow if it is 0
    if flow == 0 {
        tf_encoding |= iphc::TF_FLOW_LABEL;
    } else {
        buf[*written] = ((flow >> 16) & 0x0f) as u8;
        buf[*written + 1] = (flow >> 8) as u8;
        buf[*written + 2] = flow as u8;
        *written += 3;
    }

    if *written != old_offset {
        buf[old_offset] |= ecn << 6;
    }
    buf[0] |= tf_encoding;
}

fn compress_nh(ip6_header: &IP6Header, is_nhc: bool, buf: &mut [u8], written: &mut usize) {
    if is_nhc {
        buf[0] |= iphc::NH;
    } else {
        buf[*written] = ip6_header.next_header;
        *written += 1;
    }
}

fn compress_hl(ip6_header: &IP6Header, buf: &mut [u8], written: &mut usize) {
    let hop_limit_flag = match ip6_header.hop_limit {
        1 => iphc::HLIM_1,
        64 => iphc::HLIM_64,
        255 => iphc::HLIM_255,
        _ => {
            buf[*written] = ip6_header.hop_limit;
            *written += 1;
            iphc::HLIM_INLINE
        }
    };
    buf[0] |= hop_limit_flag;
}

// TODO: We should check to see whether context or link local compression
// schemes gives the better compression; currently, we will always match
// on link local even if we could get better compression through context.
fn compress_src(
    src_ip_addr: &IPAddr,
    src_mac_addr: &MacAddress,
    src_ctx: Option<&Context>,
    buf: &mut [u8],
    written: &mut usize,
) {
    if src_ip_addr.is_unspecified() {
        // SAC = 1, SAM = 00
        buf[1] |= iphc::SAC;
    } else if src_ip_addr.is_unicast_link_local() {
        // SAC = 0, SAM = 01, 10, 11
        compress_iid(src_ip_addr, src_mac_addr, true, buf, written);
    } else if src_ctx.is_some() {
        // SAC = 1, SAM = 01, 10, 11
        buf[1] |= iphc::SAC;
        compress_iid(src_ip_addr, src_mac_addr, true, buf, written);
    } else {
        // SAC = 0, SAM = 00
        buf[*written..*written + 16].copy_from_slice(&src_ip_addr.0);
        *written += 16;
    }
}

// TODO: For the SAC = 0, SAM = 11 case in IPv6-encapsulated headers,
// it might be that we have to compute the IID from the encapsulating
// IPv6 header address instead of the EUI-64 from the 802.15.4 layer
fn compress_iid(
    ip_addr: &IPAddr,
    mac_addr: &MacAddress,
    is_src: bool,
    buf: &mut [u8],
    written: &mut usize,
) {
    let iid: [u8; 8] = compute_iid(mac_addr);
    if ip_addr.0[8..16] == iid {
        // SAM/DAM = 11, 0 bits
        buf[1] |= if is_src {
            iphc::SAM_MODE3
        } else {
            iphc::DAM_MODE3
        };
    } else if ip_addr.0[8..14] == iphc::MAC_BASE[0..6] {
        // SAM/DAM = 10, 16 bits
        buf[1] |= if is_src {
            iphc::SAM_MODE2
        } else {
            iphc::DAM_MODE2
        };
        buf[*written..*written + 2].copy_from_slice(&ip_addr.0[14..16]);
        *written += 2;
    } else {
        // SAM/DAM = 01, 64 bits
        buf[1] |= if is_src {
            iphc::SAM_MODE1
        } else {
            iphc::DAM_MODE1
        };
        buf[*written..*written + 8].copy_from_slice(&ip_addr.0[8..16]);
        *written += 8;
    }
}

// Compresses non-multicast destination address
// TODO: We should check to see whether context or link local compression
// schemes gives the better compression; currently, we will always match
// on link local even if we could get better compression through context.
fn compress_dst(
    dst_ip_addr: &IPAddr,
    dst_mac_addr: &MacAddress,
    dst_ctx: Option<&Context>,
    buf: &mut [u8],
    written: &mut usize,
) {
    // Assumes dst_ip_addr is not a multicast address (prefix ffXX)
    if dst_ip_addr.is_unicast_link_local() {
        // Link local compression
        // M = 0, DAC = 0, DAM = 01, 10, 11
        compress_iid(dst_ip_addr, dst_mac_addr, false, buf, written);
    } else if dst_ctx.is_some() {
        // Context compression
        // DAC = 1, DAM = 01, 10, 11
        buf[1] |= iphc::DAC;
        compress_iid(dst_ip_addr, dst_mac_addr, false, buf, written);
    } else {
        // Full address inline
        // DAC = 0, DAM = 00
        buf[*written..*written + 16].copy_from_slice(&dst_ip_addr.0);
        *written += 16;
    }
}

// Compresses multicast destination addresses
fn compress_multicast(
    dst_ip_addr: &IPAddr,
    dst_ctx: Option<&Context>,
    buf: &mut [u8],
    written: &mut usize,
) {
    // Assumes dst_ip_addr is indeed a multicast address (prefix ffXX)
    buf[1] |= iphc::MULTICAST;
    if dst_ctx.is_some() {
        // M = 1, DAC = 1, DAM = 00
        buf[1] |= iphc::DAC;
        buf[*written..*written + 2].copy_from_slice(&dst_ip_addr.0[1..3]);
        buf[*written + 2..*written + 6].copy_from_slice(&dst_ip_addr.0[12..16]);
        *written += 6;
    } else {
        // M = 1, DAC = 0
        if dst_ip_addr.0[1] == 0x02 && dst_ip_addr.0[2..15].iter().all(|&b| b == 0) {
            // DAM = 11
            buf[1] |= iphc::DAM_MODE3;
            buf[*written] = dst_ip_addr.0[15];
            *written += 1;
        } else {
            if !dst_ip_addr.0[2..11].iter().all(|&b| b == 0) {
                // DAM = 00
                buf[1] |= iphc::DAM_INLINE;
                buf[*written..*written + 16].copy_from_slice(&dst_ip_addr.0);
                *written += 16;
            } else if !dst_ip_addr.0[11..13].iter().all(|&b| b == 0) {
                // DAM = 01, ffXX::00XX:XXXX:XXXX
                buf[1] |= iphc::DAM_MODE1;
                buf[*written] = dst_ip_addr.0[1];
                buf[*written + 1..*written + 6].copy_from_slice(&dst_ip_addr.0[11..16]);
                *written += 6;
            } else {
                // DAM = 10, ffXX::00XX:XXXX
                buf[1] |= iphc::DAM_MODE2;
                buf[*written] = dst_ip_addr.0[1];
                buf[*written + 1..*written + 4].copy_from_slice(&dst_ip_addr.0[13..16]);
                *written += 4;
            }
        }
    }
}

fn compress_udp_ports(udp_header: &UDPHeader, buf: &mut [u8], written: &mut usize) -> u8 {
    // Need to deal with fields in network byte order when writing directly to buf
    let src_port = udp_header.get_src_port().to_be();
    let dst_port = udp_header.get_dst_port().to_be();

    let mut udp_port_nhc = 0;
    if (src_port & nhc::UDP_4BIT_PORT_MASK) == nhc::UDP_4BIT_PORT
        && (dst_port & nhc::UDP_4BIT_PORT_MASK) == nhc::UDP_4BIT_PORT
    {
        // Both can be compressed to 4 bits
        udp_port_nhc |= nhc::UDP_SRC_PORT_FLAG | nhc::UDP_DST_PORT_FLAG;
        // This should compress the ports to a single 8-bit value,
        // with the source port before the destination port
        buf[*written] = (((src_port & !nhc::UDP_4BIT_PORT_MASK) << 4)
            | (dst_port & !nhc::UDP_4BIT_PORT_MASK)) as u8;
        *written += 1;
    } else if (src_port & nhc::UDP_8BIT_PORT_MASK) == nhc::UDP_8BIT_PORT {
        // Source port compressed to 8 bits, destination port uncompressed
        udp_port_nhc |= nhc::UDP_SRC_PORT_FLAG;
        buf[*written] = (src_port & !nhc::UDP_8BIT_PORT_MASK) as u8;
        u16_to_network_slice(dst_port.to_be(), &mut buf[*written + 1..*written + 3]);
        *written += 3;
    } else if (dst_port & nhc::UDP_8BIT_PORT_MASK) == nhc::UDP_8BIT_PORT {
        udp_port_nhc |= nhc::UDP_DST_PORT_FLAG;
        u16_to_network_slice(src_port.to_be(), &mut buf[*written..*written + 2]);
        buf[*written + 3] = (dst_port & !nhc::UDP_8BIT_PORT_MASK) as u8;
        *written += 3;
    } else {
        buf[*written] = src_port as u8;
        buf[*written + 1] = (src_port >> 8) as u8;
        buf[*written + 2] = dst_port as u8;
        buf[*written + 3] = (dst_port >> 8) as u8;
        //buf[*written..*written + 4].copy_from_slice(&udp_header[0..4]);
        *written += 4;
    }
    udp_port_nhc
}

// NOTE: We currently only support (or intend to support) carrying the UDP
// checksum inline.
fn compress_udp_checksum(udp_header: &UDPHeader, buf: &mut [u8], written: &mut usize) -> u8 {
    // get_cksum returns cksum in host byte order
    let cksum = udp_header.get_cksum().to_be();
    buf[*written] = cksum as u8;
    buf[*written + 1] = (cksum >> 8) as u8;
    *written += 2;
    // Inline checksum corresponds to the 0 flag
    0
}

/// Decompresses a 6loWPAN header into a full IPv6 header
///
/// This function decompresses the header found in `buf` and writes it
/// `out_buf`. It does not, though, copy payload bytes or a non-compressed next
/// header. As a result, the caller should copy the `buf.len - consumed`
/// remaining bytes from `buf` to `out_buf`.
///
///
/// Note that in the case of fragmentation, the total length of the IPv6
/// packet cannot be inferred from a single frame, and is instead provided
/// by the dgram_size field in the fragmentation header. Thus, if we are
/// decompressing a fragment, we rely on the dgram_size field; otherwise,
/// we infer the length from the size of buf.
///
/// # Arguments
///
/// * `ctx_store` - ???
///
/// * `buf` - A slice containing the 6LowPAN packet along with its payload.
///
/// * `src_mac_addr` - the 16-bit MAC address of the frame sender.
///
/// * `dst_mac_addr` - the 16-bit MAC address of the frame receiver.
///
/// * `out_buf` - A buffer to write the output to. Must be at least large enough
/// to store an IPv6 header (XX bytes).
///
/// * `dgram_size` - If `is_fragment` is `true`, this is used as the IPv6
/// packets total payload size. Otherwise, this is ignored.
///
/// * `is_fragment` - ???
///
/// # Returns
///
/// `Ok((consumed, written))` if decompression is successful.
///
/// * `consumed` is the number of header bytes consumed from the 6LoWPAN header
///
/// * `written` is the number of uncompressed header bytes written into
/// `out_buf`.
pub fn decompress(
    ctx_store: &dyn ContextStore,
    buf: &[u8],
    src_mac_addr: MacAddress,
    dst_mac_addr: MacAddress,
    out_buf: &mut [u8],
    dgram_size: u16,
    is_fragment: bool,
) -> Result<(usize, usize), ()> {
    // Get the LOWPAN_IPHC header (the first two bytes are the header)
    let iphc_header_1: u8 = buf[0];
    let iphc_header_2: u8 = buf[1];
    let mut consumed: usize = 2;

    let mut ip6_header = IP6Header::new();
    let mut written: usize = mem::size_of::<IP6Header>();

    // Decompress CID and CIE fields if they exist
    let (src_ctx, dst_ctx) = decompress_cie(ctx_store, iphc_header_1, buf, &mut consumed)?;

    // Traffic Class & Flow Label
    decompress_tf(&mut ip6_header, iphc_header_1, buf, &mut consumed);

    // Next Header
    let (mut is_nhc, mut next_header) = decompress_nh(iphc_header_1, buf, &mut consumed);

    // Hop Limit
    decompress_hl(&mut ip6_header, iphc_header_1, buf, &mut consumed)?;

    // Source Address
    decompress_src(
        &mut ip6_header,
        iphc_header_2,
        &src_mac_addr,
        &src_ctx,
        buf,
        &mut consumed,
    )?;

    // Destination Address
    if (iphc_header_2 & iphc::MULTICAST) != 0 {
        decompress_multicast(&mut ip6_header, iphc_header_2, &dst_ctx, buf, &mut consumed)?;
    } else {
        decompress_dst(
            &mut ip6_header,
            iphc_header_2,
            &dst_mac_addr,
            &dst_ctx,
            buf,
            &mut consumed,
        )?;
    }

    // next_header is already set if is_nhc is false, otherwise it can be
    // determined from the LoWPAN NHC header byte
    if is_nhc {
        next_header = nhc_to_ip6_nh(buf[consumed])?;
    }
    ip6_header.set_next_header(next_header);

    // Next headers after the IPv6 fixed header
    // At each iteration, consumed points to the first byte of the compressed
    // next header in buf.
    while is_nhc {
        // Advance past the LoWPAN NHC byte
        let nhc_header = buf[consumed];
        consumed += 1;

        // Scoped mutable borrow of out_buf
        let next_headers: &mut [u8] = &mut out_buf[written..];

        match next_header {
            ip6_nh::IP6 => {
                let (encap_consumed, encap_written) = decompress(
                    ctx_store,
                    &buf[consumed..],
                    src_mac_addr,
                    dst_mac_addr,
                    next_headers,
                    dgram_size,
                    is_fragment,
                )?;
                consumed += encap_consumed;
                written += encap_written;
                break;
            }
            ip6_nh::UDP => {
                // UDP length includes UDP header and data in bytes
                // Below line works bc udp nh must be last nh per 6282
                let mut udp_length = if is_fragment {
                    dgram_size - written as u16
                } else {
                    buf.len() as u16 - consumed as u16
                };

                // Decompress UDP header fields
                let consumed_before_port_decompress = consumed;
                let (src_port, dst_port) = decompress_udp_ports(nhc_header, buf, &mut consumed);

                //need to add any growth from decompression to the udp length if we used the buf
                //len to calculate the length
                if !is_fragment {
                    // Expansion from port compression
                    udp_length +=
                        nhc::UDP_PORTS_SIZE - ((consumed - consumed_before_port_decompress) as u16);
                    // Expansion from length elision (always applied per RFC 6282, length is 2
                    // bytes)
                    udp_length += 2;
                    // UDP checksum elision
                    if (nhc_header & nhc::UDP_CHECKSUM_FLAG) != 0 {
                        udp_length += 2;
                    }
                }

                // Fill in uncompressed UDP header
                // TODO: The current implementation works, but I don't understand the calls to
                // to_be(), because src_port.to_be() returns the src_port in little endian..
                // Accordingly, the udp_length must also be written in little endian for this
                // to work.
                u16_to_network_slice(src_port.to_be(), &mut next_headers[0..2]);
                u16_to_network_slice(dst_port.to_be(), &mut next_headers[2..4]);
                u16_to_network_slice(udp_length, &mut next_headers[4..6]);
                // Need to fill in header values before computing the checksum
                let udp_checksum = decompress_udp_checksum(
                    nhc_header,
                    &next_headers[0..8],
                    udp_length,
                    &ip6_header,
                    buf,
                    &mut consumed,
                    is_fragment,
                );
                u16_to_network_slice(udp_checksum.to_be(), &mut next_headers[6..8]);

                written += 8;
                break;
            }
            ip6_nh::FRAGMENT
            | ip6_nh::HOP_OPTS
            | ip6_nh::ROUTING
            | ip6_nh::DST_OPTS
            | ip6_nh::MOBILITY => {
                // True if the next header is also compressed
                is_nhc = (nhc_header & nhc::NH) != 0;

                // len is the number of octets following the length field
                let len = buf[consumed] as usize;
                consumed += 1;

                // Check that there is a next header in the buffer,
                // which must be the case if the last next header specifies
                // NH = 1
                if consumed + len >= buf.len() {
                    return Err(());
                }

                // Length in 8-octet units after the first 8 octets
                // (per the IPv6 ext hdr spec)
                let mut hdr_len_field = (len - 6) / 8;
                if (len - 6) % 8 != 0 {
                    hdr_len_field += 1;
                }

                // Gets the type of the subsequent next header.  If is_nhc
                // is true, there must be a LoWPAN NHC header byte,
                // otherwise there is either an uncompressed next header.
                next_header = if is_nhc {
                    // The next header is LoWPAN NHC-compressed
                    nhc_to_ip6_nh(buf[consumed + len])?
                } else {
                    // The next header is uncompressed
                    buf[consumed + len]
                };

                // Fill in the extended header in uncompressed IPv6 format
                next_headers[0] = next_header;
                next_headers[1] = hdr_len_field as u8;
                // Copies over the remaining options.
                next_headers[2..2 + len].copy_from_slice(&buf[consumed..consumed + len]);

                // Fill in padding
                let pad_bytes = hdr_len_field * 8 - len + 6;
                if pad_bytes == 1 {
                    // Pad1
                    next_headers[2 + len] = 0;
                } else {
                    // PadN, 2 <= pad_bytes <= 7
                    next_headers[2 + len] = 1;
                    next_headers[2 + len + 1] = pad_bytes as u8 - 2;
                    for i in 2..pad_bytes {
                        next_headers[2 + len + i] = 0;
                    }
                }

                written += 8 + hdr_len_field * 8;
                consumed += len;
            }
            _ => panic!("Unreachable case"),
        }
    }

    // The IPv6 header length field is the size of the IPv6 payload,
    // including extension headers. This is thus the uncompressed
    // size of the IPv6 packet - the fixed IPv6 header.
    let payload_len = if is_fragment {
        (dgram_size as usize) - mem::size_of::<IP6Header>()
    } else {
        written + (buf.len() - consumed) - mem::size_of::<IP6Header>()
    };
    ip6_header.payload_len = (payload_len as u16).to_be();
    IP6Header::encode(&ip6_header, out_buf).done().ok_or(())?;
    Ok((consumed, written))
}

fn decompress_cie(
    ctx_store: &dyn ContextStore,
    iphc_header: u8,
    buf: &[u8],
    consumed: &mut usize,
) -> Result<(Context, Context), ()> {
    let ctx_0 = ctx_store.get_context_0();
    let (mut src_ctx, mut dst_ctx) = (ctx_0, ctx_0);
    if iphc_header & iphc::CID != 0 {
        let sci = buf[*consumed] >> 4;
        let dci = buf[*consumed] & 0xf;
        *consumed += 1;

        if sci != 0 {
            src_ctx = ctx_store.get_context_from_id(sci).ok_or(())?;
        }
        if dci != 0 {
            dst_ctx = ctx_store.get_context_from_id(dci).ok_or(())?;
        }
    }
    Ok((src_ctx, dst_ctx))
}

fn decompress_tf(ip6_header: &mut IP6Header, iphc_header: u8, buf: &[u8], consumed: &mut usize) {
    let fl_compressed = (iphc_header & iphc::TF_FLOW_LABEL) != 0;
    let tc_compressed = (iphc_header & iphc::TF_TRAFFIC_CLASS) != 0;

    // Determine ECN and DSCP separately because the order is different
    // from the IPv6 traffic class field.
    if !fl_compressed || !tc_compressed {
        let ecn = buf[*consumed] >> 6;
        ip6_header.set_ecn(ecn);
    }
    if !tc_compressed {
        let dscp = buf[*consumed] & 0b111111;
        ip6_header.set_dscp(dscp);
        *consumed += 1;
    }

    // Flow label is always in the same bit position relative to the last
    // three bytes in the inline fields
    if fl_compressed {
        ip6_header.set_flow_label(0);
    } else {
        let flow = (((buf[*consumed] & 0x0f) as u32) << 16)
            | ((buf[*consumed + 1] as u32) << 8)
            | (buf[*consumed + 2] as u32);
        *consumed += 3;
        ip6_header.set_flow_label(flow);
    }
}

fn decompress_nh(iphc_header: u8, buf: &[u8], consumed: &mut usize) -> (bool, u8) {
    let is_nhc = (iphc_header & iphc::NH) != 0;
    let mut next_header: u8 = 0;
    if !is_nhc {
        next_header = buf[*consumed];
        *consumed += 1;
    }
    (is_nhc, next_header)
}

fn decompress_hl(
    ip6_header: &mut IP6Header,
    iphc_header: u8,
    buf: &[u8],
    consumed: &mut usize,
) -> Result<(), ()> {
    let hop_limit = match iphc_header & iphc::HLIM_MASK {
        iphc::HLIM_1 => 1,
        iphc::HLIM_64 => 64,
        iphc::HLIM_255 => 255,
        iphc::HLIM_INLINE => {
            let hl = buf[*consumed];
            *consumed += 1;
            hl
        }
        _ => panic!("Unreachable case"),
    };
    ip6_header.set_hop_limit(hop_limit);
    Ok(())
}

fn decompress_src(
    ip6_header: &mut IP6Header,
    iphc_header: u8,
    mac_addr: &MacAddress,
    ctx: &Context,
    buf: &[u8],
    consumed: &mut usize,
) -> Result<(), ()> {
    let uses_context = (iphc_header & iphc::SAC) != 0;
    let sam_mode = iphc_header & iphc::SAM_MASK;
    if uses_context && sam_mode == iphc::SAM_INLINE {
        // SAC = 1, SAM = 00: UNSPECIFIED (::), which is already the default
    } else if uses_context {
        // SAC = 1, SAM = 01, 10, 11
        decompress_iid_context(
            sam_mode,
            &mut ip6_header.src_addr,
            mac_addr,
            ctx,
            buf,
            consumed,
        )?;
    } else {
        // SAC = 0, SAM = 00, 01, 10, 11
        decompress_iid_link_local(sam_mode, &mut ip6_header.src_addr, mac_addr, buf, consumed)?;
    }
    Ok(())
}

fn decompress_dst(
    ip6_header: &mut IP6Header,
    iphc_header: u8,
    mac_addr: &MacAddress,
    ctx: &Context,
    buf: &[u8],
    consumed: &mut usize,
) -> Result<(), ()> {
    let uses_context = (iphc_header & iphc::DAC) != 0;
    let dam_mode = iphc_header & iphc::DAM_MASK;
    if uses_context && dam_mode == iphc::DAM_INLINE {
        // DAC = 1, DAM = 00: Reserved
        return Err(());
    } else if uses_context {
        // DAC = 1, DAM = 01, 10, 11
        decompress_iid_context(
            dam_mode,
            &mut ip6_header.dst_addr,
            mac_addr,
            ctx,
            buf,
            consumed,
        )?;
    } else {
        // DAC = 0, DAM = 00, 01, 10, 11
        decompress_iid_link_local(dam_mode, &mut ip6_header.dst_addr, mac_addr, buf, consumed)?;
    }
    Ok(())
}

fn decompress_multicast(
    ip6_header: &mut IP6Header,
    iphc_header: u8,
    ctx: &Context,
    buf: &[u8],
    consumed: &mut usize,
) -> Result<(), ()> {
    let uses_context = (iphc_header & iphc::DAC) != 0;
    let dam_mode = iphc_header & iphc::DAM_MASK;
    let ip_addr: &mut IPAddr = &mut ip6_header.dst_addr;
    if uses_context {
        match dam_mode {
            iphc::DAM_INLINE => {
                // DAC = 1, DAM = 00: 48 bits
                // ffXX:XXLL:PPPP:PPPP:PPPP:PPPP:XXXX:XXXX
                let prefix_bytes = ((ctx.prefix_len + 7) / 8) as usize;
                if prefix_bytes > 8 {
                    // The maximum prefix length for this mode is 64 bits.
                    // If the specified prefix exceeds this length, the
                    // compression is invalid.
                    return Err(());
                }
                ip_addr.0[0] = 0xff;
                ip_addr.0[1] = buf[*consumed];
                ip_addr.0[2] = buf[*consumed + 1];
                ip_addr.0[3] = ctx.prefix_len;
                ip_addr.0[4..4 + prefix_bytes].copy_from_slice(&ctx.prefix[0..prefix_bytes]);
                ip_addr.0[12..16].copy_from_slice(&buf[*consumed + 2..*consumed + 6]);
                *consumed += 6;
            }
            _ => {
                // DAC = 1, DAM = 01, 10, 11: Reserved
                return Err(());
            }
        }
    } else {
        match dam_mode {
            // DAC = 0, DAM = 00: Inline
            iphc::DAM_INLINE => {
                ip_addr.0.copy_from_slice(&buf[*consumed..*consumed + 16]);
                *consumed += 16;
            }
            // DAC = 0, DAM = 01: 48 bits
            // ffXX::00XX:XXXX:XXXX
            iphc::DAM_MODE1 => {
                ip_addr.0[0] = 0xff;
                ip_addr.0[1] = buf[*consumed];
                *consumed += 1;
                ip_addr.0[11..16].copy_from_slice(&buf[*consumed..*consumed + 5]);
                *consumed += 5;
            }
            // DAC = 0, DAM = 10: 32 bits
            // ffXX::00XX:XXXX
            iphc::DAM_MODE2 => {
                ip_addr.0[0] = 0xff;
                ip_addr.0[1] = buf[*consumed];
                *consumed += 1;
                ip_addr.0[13..16].copy_from_slice(&buf[*consumed..*consumed + 3]);
                *consumed += 3;
            }
            // DAC = 0, DAM = 11: 8 bits
            // ff02::00XX
            iphc::DAM_MODE3 => {
                ip_addr.0[0] = 0xff;
                ip_addr.0[1] = 0x02;
                ip_addr.0[15] = buf[*consumed];
                *consumed += 1;
            }
            _ => panic!("Unreachable case"),
        }
    }
    Ok(())
}

fn decompress_iid_link_local(
    addr_mode: u8,
    ip_addr: &mut IPAddr,
    mac_addr: &MacAddress,
    buf: &[u8],
    consumed: &mut usize,
) -> Result<(), ()> {
    let mode = addr_mode & (iphc::SAM_MASK | iphc::DAM_MASK);
    match mode {
        // SAM, DAM = 00: Inline
        iphc::SAM_INLINE => {
            // SAM_INLINE is equivalent to DAM_INLINE
            ip_addr.0.copy_from_slice(&buf[*consumed..*consumed + 16]);
            *consumed += 16;
        }
        // SAM, DAM = 01: 64 bits
        // Link-local prefix (64 bits) + 64 bits carried inline
        iphc::SAM_MODE1 | iphc::DAM_MODE1 => {
            ip_addr.set_unicast_link_local();
            ip_addr.0[8..16].copy_from_slice(&buf[*consumed..*consumed + 8]);
            *consumed += 8;
        }
        // SAM, DAM = 11: 16 bits
        // Link-local prefix (112 bits) + 0000:00ff:fe00:XXXX
        iphc::SAM_MODE2 | iphc::DAM_MODE2 => {
            ip_addr.set_unicast_link_local();
            ip_addr.0[11..13].copy_from_slice(&iphc::MAC_BASE[3..5]);
            ip_addr.0[14..16].copy_from_slice(&buf[*consumed..*consumed + 2]);
            *consumed += 2;
        }
        // SAM, DAM = 11: 0 bits
        // Linx-local prefix (64 bits) + IID from outer header (64 bits)
        iphc::SAM_MODE3 | iphc::DAM_MODE3 => {
            ip_addr.set_unicast_link_local();
            ip_addr.0[8..16].copy_from_slice(&compute_iid(mac_addr));
        }
        _ => panic!("Unreachable case"),
    }
    Ok(())
}

fn decompress_iid_context(
    addr_mode: u8,
    ip_addr: &mut IPAddr,
    mac_addr: &MacAddress,
    ctx: &Context,
    buf: &[u8],
    consumed: &mut usize,
) -> Result<(), ()> {
    let mode = addr_mode & (iphc::SAM_MASK | iphc::DAM_MASK);
    match mode {
        // DAM = 00: Reserved
        // SAM = 0 is handled separately outside this method
        iphc::DAM_INLINE => {
            return Err(());
        }
        // SAM, DAM = 01: 64 bits
        // Suffix is the 64 bits carried inline
        iphc::SAM_MODE1 | iphc::DAM_MODE1 => {
            ip_addr.0[8..16].copy_from_slice(&buf[*consumed..*consumed + 8]);
            *consumed += 8;
        }
        // SAM, DAM = 10: 16 bits
        // Suffix is 0000:00ff:fe00:XXXX
        iphc::SAM_MODE2 | iphc::DAM_MODE2 => {
            ip_addr.0[8..16].copy_from_slice(&iphc::MAC_BASE);
            ip_addr.0[14..16].copy_from_slice(&buf[*consumed..*consumed + 2]);
            *consumed += 2;
        }
        // SAM, DAM = 11: 0 bits
        // Suffix is the IID computed from the encapsulating header
        iphc::SAM_MODE3 | iphc::DAM_MODE3 => {
            let iid = compute_iid(mac_addr);
            ip_addr.0[8..16].copy_from_slice(&iid[0..8]);
        }
        _ => panic!("Unreachable case"),
    }
    // The bits covered by the provided context are always used, so we copy
    // the context bits into the address after the non-context bits are set.
    ip_addr.set_prefix(&ctx.prefix, ctx.prefix_len);
    Ok(())
}

// Returns the UDP ports in host byte-order
fn decompress_udp_ports(udp_nhc: u8, buf: &[u8], consumed: &mut usize) -> (u16, u16) {
    let src_compressed = (udp_nhc & nhc::UDP_SRC_PORT_FLAG) != 0;
    let dst_compressed = (udp_nhc & nhc::UDP_DST_PORT_FLAG) != 0;

    let src_port;
    let dst_port;
    if src_compressed && dst_compressed {
        // Both src and dst are compressed to 4 bits
        let src_short = ((buf[*consumed] >> 4) & 0xf) as u16;
        let dst_short = (buf[*consumed] & 0xf) as u16;
        src_port = nhc::UDP_4BIT_PORT | src_short;
        dst_port = nhc::UDP_4BIT_PORT | dst_short;
        *consumed += 1;
    } else if src_compressed {
        // Source port is compressed to 8 bits
        src_port = nhc::UDP_8BIT_PORT | (buf[*consumed] as u16);
        // Destination port is uncompressed
        dst_port = u16::from_be(network_slice_to_u16(&buf[*consumed + 1..*consumed + 3]));
        *consumed += 3;
    } else if dst_compressed {
        // Source port is uncompressed
        src_port = u16::from_be(network_slice_to_u16(&buf[*consumed..*consumed + 2]));
        // Destination port is compressed to 8 bits
        dst_port = nhc::UDP_8BIT_PORT | (buf[*consumed + 2] as u16);
        *consumed += 3;
    } else {
        // Both ports are uncompressed
        src_port = u16::from_be(network_slice_to_u16(&buf[*consumed..*consumed + 2]));
        dst_port = u16::from_be(network_slice_to_u16(&buf[*consumed + 2..*consumed + 4]));
        *consumed += 4;
    }
    (src_port, dst_port)
}

// Returns the UDP checksum in host byte-order
fn decompress_udp_checksum(
    udp_nhc: u8,
    udp_header: &[u8],
    udp_length: u16,
    ip6_header: &IP6Header,
    buf: &[u8],
    consumed: &mut usize,
    is_fragment: bool,
) -> u16 {
    // TODO: In keeping with Postel's Law, we accept UDP packets that elide the
    // checksum (per RFC 6282). We are not sure if we should continue to support
    // this feature however.
    // Also, this implementation currently does not work for multi-frame packets,
    // as decompress is called on the first frame before the others arrive.
    if (udp_nhc & nhc::UDP_CHECKSUM_FLAG) != 0 && !is_fragment {
        let mut udp_header_copy: [u8; 8] = [0, 0, 0, 0, 0, 0, 0, 0];
        udp_header_copy.copy_from_slice(udp_header);
        match UDPHeader::decode(&udp_header_copy).done() {
            Some((_offset, hdr)) => u16::from_be(compute_udp_checksum(
                ip6_header,
                &hdr,
                udp_length,
                &buf[*consumed..],
            )),
            None => 0, //Will be dropped  by IP layer
        }
    } else {
        let checksum = u16::from_be(network_slice_to_u16(&buf[*consumed..*consumed + 2]));
        *consumed += 2;
        checksum
    }
}