capsules_extra/ble_advertising_driver.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Bluetooth Low Energy Advertising Driver
//!
//! A system call driver that exposes the Bluetooth Low Energy advertising
//! channel. The driver generates a unique static address for each process,
//! allowing each process to act as its own device and send or scan for
//! advertisements. Timing of advertising or scanning events is handled by the
//! driver but processes can request an advertising or scanning interval.
//! Processes can also control the TX power used for their advertisements.
//!
//! Data payloads are limited to 31 bytes since the maximum advertising channel
//! protocol data unit (PDU) is 37 bytes and includes a 6-byte header.
//!
//! ### Allow system calls
//!
//! There is one ReadWrite and one ReadOnly allow buffers, both at index `0`.
//!
//! * ReadOnly: Advertising data, containing the full _payload_ (i.e. excluding the header) the
//! process wishes to advertise.
//! * ReadWrite: Passive scanning buffer, which is populated during BLE scans with complete (i.e.
//! including headers) advertising packets received on channels 37, 38 and 39.
//!
//! The possible return codes from the 'allow' system call indicate the following:
//!
//! * Ok(()): The buffer has successfully been filled
//! * NOMEM: No sufficient memory available
//! * INVAL: Invalid address of the buffer or other error
//! * BUSY: The driver is currently busy with other tasks
//! * ENOSUPPORT: The operation is not supported
//! * ERROR: Operation `map` on Option failed
//!
//! ### Subscribe system call
//!
//! The `subscribe` system call supports two arguments `subscribe number' and `callback`.
//! The `subscribe` is used to specify the specific operation, currently:
//!
//! * 0: provides a callback user-space when a device scanning for advertisements
//! and the callback is used to invoke user-space processes.
//!
//! The possible return codes from the `allow` system call indicate the following:
//!
//! * NOMEM: Not sufficient amount memory
//! * INVAL: Invalid operation
//!
//! ### Command system call
//!
//! The `command` system call supports two arguments `command number` and `subcommand number`.
//! `command number` is used to specify the specific operation, currently
//! the following commands are supported:
//!
//! * 0: start advertisement
//! * 1: stop advertisement or scanning
//! * 5: start scanning
//!
//! The possible return codes from the `command` system call indicate the following:
//!
//! * Ok(()): The command was successful
//! * BUSY: The driver is currently busy with other tasks
//! * ENOSUPPORT: The operation is not supported
//!
//! Usage
//! -----
//!
//! You need a device that provides the `kernel::BleAdvertisementDriver` trait along with a virtual
//! timer to perform events and not block the entire kernel
//!
//! ```rust,ignore
//! # use kernel::static_init;
//! # use capsules::virtual_alarm::VirtualMuxAlarm;
//!
//! let ble_radio = static_init!(
//! nrf5x::ble_advertising_driver::BLE<
//! 'static,
//! nrf52::radio::Radio, VirtualMuxAlarm<'static, Rtc>
//! >,
//! nrf5x::ble_advertising_driver::BLE::new(
//! &mut nrf52::radio::RADIO,
//! board_kernel.create_grant(&grant_cap),
//! &mut nrf5x::ble_advertising_driver::BUF,
//! ble_radio_virtual_alarm));
//! nrf5x::ble_advertising_hil::BleAdvertisementDriver::set_rx_client(&nrf52::radio::RADIO,
//! ble_radio);
//! nrf5x::ble_advertising_hil::BleAdvertisementDriver::set_tx_client(&nrf52::radio::RADIO,
//! ble_radio);
//! ble_radio_virtual_alarm.set_client(ble_radio);
//! ```
//!
//! ### Authors
//! * Niklas Adolfsson <niklasadolfsson1@gmail.com>
//! * Fredrik Nilsson <frednils@student.chalmers.se>
//! * Date: June 22, 2017
// # Implementation
//
// Advertising virtualization works by implementing a virtual periodic timer for each process. The
// timer is configured to fire at each advertising interval, as specified by the process. When a
// timer fires, we serialize the advertising packet for that process (using the provided AdvData
// payload, generated address and PDU type) and perform one advertising event (on each of three
// channels).
//
// This means that advertising events can collide. In this case, we just defer one of the
// advertisements. Because we add a pseudo random pad to the timer interval each time (as required
// by the Bluetooth specification) multiple collisions of the same processes are highly unlikely.
use core::cell::Cell;
use core::cmp;
use kernel::debug;
use kernel::grant::{AllowRoCount, AllowRwCount, Grant, GrantKernelData, UpcallCount};
use kernel::hil::ble_advertising;
use kernel::hil::ble_advertising::RadioChannel;
use kernel::hil::time::{Frequency, Ticks};
use kernel::processbuffer::{ReadableProcessBuffer, WriteableProcessBuffer};
use kernel::syscall::{CommandReturn, SyscallDriver};
use kernel::utilities::cells::OptionalCell;
use kernel::utilities::copy_slice::CopyOrErr;
use kernel::{ErrorCode, ProcessId};
/// Syscall driver number.
use capsules_core::driver;
pub const DRIVER_NUM: usize = driver::NUM::BleAdvertising as usize;
/// Ids for read-only allow buffers
mod ro_allow {
pub const ADV_DATA: usize = 0;
/// The number of allow buffers the kernel stores for this grant
pub const COUNT: u8 = 1;
}
/// Ids for read-write allow buffers
mod rw_allow {
pub const SCAN_BUFFER: usize = 0;
/// The number of allow buffers the kernel stores for this grant
pub const COUNT: u8 = 1;
}
const PACKET_ADDR_LEN: usize = 6;
pub const PACKET_LENGTH: usize = 39;
const ADV_HEADER_TXADD_OFFSET: usize = 6;
#[derive(PartialEq, Debug)]
enum BLEState {
Idle,
ScanningIdle,
Scanning(RadioChannel),
AdvertisingIdle,
Advertising(RadioChannel),
}
#[derive(Copy, Clone)]
enum Expiration {
Disabled,
Enabled(u32, u32),
}
#[derive(Copy, Clone)]
struct AlarmData {
expiration: Expiration,
}
impl AlarmData {
fn new() -> AlarmData {
AlarmData {
expiration: Expiration::Disabled,
}
}
}
type AdvPduType = u8;
// BLUETOOTH SPECIFICATION Version 4.2 [Vol 6, Part B], section 2.3.3
const ADV_IND: AdvPduType = 0b0000;
#[allow(dead_code)]
const ADV_DIRECTED_IND: AdvPduType = 0b0001;
const ADV_NONCONN_IND: AdvPduType = 0b0010;
#[allow(dead_code)]
const SCAN_REQ: AdvPduType = 0b0011;
#[allow(dead_code)]
const SCAN_RESP: AdvPduType = 0b0100;
#[allow(dead_code)]
const CONNECT_IND: AdvPduType = 0b0101;
const ADV_SCAN_IND: AdvPduType = 0b0110;
/// Process specific memory
pub struct App {
process_status: Option<BLEState>,
alarm_data: AlarmData,
// Advertising meta-data
address: [u8; PACKET_ADDR_LEN],
pdu_type: AdvPduType,
advertisement_interval_ms: u32,
tx_power: u8,
/// The state of an app-specific pseudo random number.
///
/// For example, it can be used for the pseudo-random `advDelay` parameter.
/// It should be read using the `random_number` method, which updates it as
/// well.
random_nonce: u32,
}
impl Default for App {
fn default() -> App {
App {
alarm_data: AlarmData::new(),
address: [0; PACKET_ADDR_LEN],
pdu_type: ADV_NONCONN_IND,
process_status: Some(BLEState::Idle),
tx_power: 0,
advertisement_interval_ms: 200,
// Just use any non-zero starting value by default
random_nonce: 0xdeadbeef,
}
}
}
impl App {
// Bluetooth Core Specification:Vol. 6, Part B, section 1.3.2.1 Static Device Address
//
// A static address is a 48-bit randomly generated address and shall meet the following
// requirements:
// • The two most significant bits of the address shall be equal to 1
// • At least one bit of the random part of the address shall be 0
// • At least one bit of the random part of the address shall be 1
//
// Note that endianness is a potential problem here as this is suppose to be platform
// independent therefore use 0xf0 as both byte 1 and byte 6 i.e., the two most significant bits
// are equal to one regardless of endianness
//
// Byte 1 0xf0
// Byte 2-5 random
// Byte 6 0xf0
// FIXME: For now use ProcessId as "randomness"
fn generate_random_address(&mut self, processid: kernel::ProcessId) -> Result<(), ErrorCode> {
self.address = [
0xf0,
(processid.id() & 0xff) as u8,
((processid.id() << 8) & 0xff) as u8,
((processid.id() << 16) & 0xff) as u8,
((processid.id() << 24) & 0xff) as u8,
0xf0,
];
Ok(())
}
fn send_advertisement<'a, B, A>(
&mut self,
processid: kernel::ProcessId,
kernel_data: &GrantKernelData,
ble: &BLE<'a, B, A>,
channel: RadioChannel,
) -> Result<(), ErrorCode>
where
B: ble_advertising::BleAdvertisementDriver<'a> + ble_advertising::BleConfig,
A: kernel::hil::time::Alarm<'a>,
{
// Ensure we have an address set before advertisement
self.generate_random_address(processid)?;
kernel_data
.get_readonly_processbuffer(ro_allow::ADV_DATA)
.and_then(|adv_data| {
adv_data.enter(|adv_data| {
ble.kernel_tx
.take()
.map_or(Err(ErrorCode::FAIL), |kernel_tx| {
let adv_data_len =
cmp::min(kernel_tx.len() - PACKET_ADDR_LEN - 2, adv_data.len());
let adv_data_corrected =
adv_data.get(..adv_data_len).ok_or(ErrorCode::SIZE)?;
let payload_len = adv_data_corrected.len() + PACKET_ADDR_LEN;
{
let (header, payload) = kernel_tx.split_at_mut(2);
header[0] = self.pdu_type;
match self.pdu_type {
ADV_IND | ADV_NONCONN_IND | ADV_SCAN_IND => {
// Set TxAdd because AdvA field is going to be a "random"
// address
header[0] |= 1 << ADV_HEADER_TXADD_OFFSET;
}
_ => {}
}
// The LENGTH field is 6-bits wide, so make sure to truncate it
header[1] = (payload_len & 0x3f) as u8;
let (adva, data) = payload.split_at_mut(6);
adva.copy_from_slice_or_err(&self.address)?;
adv_data_corrected.copy_to_slice(&mut data[..adv_data_len]);
}
let total_len = cmp::min(PACKET_LENGTH, payload_len + 2);
ble.radio
.transmit_advertisement(kernel_tx, total_len, channel);
Ok(())
})
})
})
.unwrap_or(Err(ErrorCode::FAIL))
}
// Returns a new pseudo-random number and updates the randomness state.
//
// Uses the [Xorshift](https://en.wikipedia.org/wiki/Xorshift) algorithm to
// produce pseudo-random numbers. Uses the `random_nonce` field to keep
// state.
fn random_nonce(&mut self) -> u32 {
let mut next_nonce = ::core::num::Wrapping(self.random_nonce);
next_nonce ^= next_nonce << 13;
next_nonce ^= next_nonce >> 17;
next_nonce ^= next_nonce << 5;
self.random_nonce = next_nonce.0;
self.random_nonce
}
// Set the next alarm for this app using the period and provided start time.
fn set_next_alarm<F: Frequency>(&mut self, now: u32) {
let nonce = self.random_nonce() % 10;
let period_ms = (self.advertisement_interval_ms + nonce) * F::frequency() / 1000;
self.alarm_data.expiration = Expiration::Enabled(now, period_ms);
}
}
pub struct BLE<'a, B, A>
where
B: ble_advertising::BleAdvertisementDriver<'a> + ble_advertising::BleConfig,
A: kernel::hil::time::Alarm<'a>,
{
radio: &'a B,
busy: Cell<bool>,
app: Grant<
App,
UpcallCount<1>,
AllowRoCount<{ ro_allow::COUNT }>,
AllowRwCount<{ rw_allow::COUNT }>,
>,
kernel_tx: kernel::utilities::cells::TakeCell<'static, [u8]>,
alarm: &'a A,
sending_app: OptionalCell<kernel::ProcessId>,
receiving_app: OptionalCell<kernel::ProcessId>,
}
impl<'a, B, A> BLE<'a, B, A>
where
B: ble_advertising::BleAdvertisementDriver<'a> + ble_advertising::BleConfig,
A: kernel::hil::time::Alarm<'a>,
{
pub fn new(
radio: &'a B,
container: Grant<
App,
UpcallCount<1>,
AllowRoCount<{ ro_allow::COUNT }>,
AllowRwCount<{ rw_allow::COUNT }>,
>,
tx_buf: &'static mut [u8],
alarm: &'a A,
) -> BLE<'a, B, A> {
BLE {
radio,
busy: Cell::new(false),
app: container,
kernel_tx: kernel::utilities::cells::TakeCell::new(tx_buf),
alarm,
sending_app: OptionalCell::empty(),
receiving_app: OptionalCell::empty(),
}
}
// Determines which app timer will expire next and sets the underlying alarm
// to it.
//
// This method iterates through all grants so it should be used somewhat
// sparingly. Moreover, it should _not_ be called from within a grant,
// since any open grant will not be iterated over and the wrong timer will
// likely be chosen.
fn reset_active_alarm(&self) {
let now = self.alarm.now();
let mut next_ref = u32::MAX;
let mut next_dt = u32::MAX;
let mut next_dist = u32::MAX;
for app in self.app.iter() {
app.enter(|app, _| match app.alarm_data.expiration {
Expiration::Enabled(reference, dt) => {
let exp = reference.wrapping_add(dt);
let t_dist = exp.wrapping_sub(now.into_u32());
if next_dist > t_dist {
next_ref = reference;
next_dt = dt;
next_dist = t_dist;
}
}
Expiration::Disabled => {}
});
}
if next_ref != u32::MAX {
self.alarm
.set_alarm(A::Ticks::from(next_ref), A::Ticks::from(next_dt));
}
}
}
// Timer alarm
impl<'a, B, A> kernel::hil::time::AlarmClient for BLE<'a, B, A>
where
B: ble_advertising::BleAdvertisementDriver<'a> + ble_advertising::BleConfig,
A: kernel::hil::time::Alarm<'a>,
{
// When an alarm is fired, we find which apps have expired timers. Expired
// timers indicate a desire to perform some operation (e.g. start an
// advertising or scanning event). We know which operation based on the
// current app's state.
//
// In case of collision---if there is already an event happening---we'll
// just delay the operation for next time and hope for the best. Since some
// randomness is added for each period in an app's timer, collisions should
// be rare in practice.
//
// TODO: perhaps break ties more fairly by prioritizing apps that have least
// recently performed an operation.
fn alarm(&self) {
let now = self.alarm.now();
self.app.each(|processid, app, kernel_data| {
if let Expiration::Enabled(reference, dt) = app.alarm_data.expiration {
let exp = A::Ticks::from(reference.wrapping_add(dt));
let t0 = A::Ticks::from(reference);
let expired = !now.within_range(t0, exp);
if expired {
if self.busy.get() {
// The radio is currently busy, so we won't be able to start the
// operation at the appropriate time. Instead, reschedule the
// operation for later. This is _kind_ of simulating actual
// on-air interference. 3 seems like a small number of ticks.
debug!("BLE: operation delayed for app {:?}", processid);
app.set_next_alarm::<A::Frequency>(self.alarm.now().into_u32());
return;
}
app.alarm_data.expiration = Expiration::Disabled;
match app.process_status {
Some(BLEState::AdvertisingIdle) => {
self.busy.set(true);
app.process_status =
Some(BLEState::Advertising(RadioChannel::AdvertisingChannel37));
self.sending_app.set(processid);
let _ = self.radio.set_tx_power(app.tx_power);
let _ = app.send_advertisement(
processid,
kernel_data,
self,
RadioChannel::AdvertisingChannel37,
);
}
Some(BLEState::ScanningIdle) => {
self.busy.set(true);
app.process_status =
Some(BLEState::Scanning(RadioChannel::AdvertisingChannel37));
self.receiving_app.set(processid);
let _ = self.radio.set_tx_power(app.tx_power);
self.radio
.receive_advertisement(RadioChannel::AdvertisingChannel37);
}
_ => debug!(
"app: {:?} \t invalid state {:?}",
processid, app.process_status
),
}
}
}
});
self.reset_active_alarm();
}
}
// Callback from the radio once a RX event occur
impl<'a, B, A> ble_advertising::RxClient for BLE<'a, B, A>
where
B: ble_advertising::BleAdvertisementDriver<'a> + ble_advertising::BleConfig,
A: kernel::hil::time::Alarm<'a>,
{
fn receive_event(&self, buf: &'static mut [u8], len: u8, result: Result<(), ErrorCode>) {
self.receiving_app.map(|processid| {
let _ = self.app.enter(processid, |app, kernel_data| {
// Validate the received data, because ordinary BLE packets can be bigger than 39
// bytes. Thus, we need to check for that!
// Moreover, we use the packet header to find size but the radio reads maximum
// 39 bytes.
// Therefore, we ignore payloads with a header size bigger than 39 because the
// channels 37, 38 and 39 should only be used for advertisements!
// Packets that are bigger than 39 bytes are likely `Channel PDUs` which should
// only be sent on the other 37 RadioChannel channels.
if len <= PACKET_LENGTH as u8 && result == Ok(()) {
// write to buffer in userland
let success = kernel_data
.get_readwrite_processbuffer(rw_allow::SCAN_BUFFER)
.and_then(|scan_buffer| {
scan_buffer.mut_enter(|userland| {
userland[0..len as usize]
.copy_from_slice_or_err(&buf[0..len as usize])
.is_ok()
})
})
.unwrap_or(false);
if success {
kernel_data
.schedule_upcall(
0,
(kernel::errorcode::into_statuscode(result), len as usize, 0),
)
.ok();
}
}
match app.process_status {
Some(BLEState::Scanning(RadioChannel::AdvertisingChannel37)) => {
app.process_status =
Some(BLEState::Scanning(RadioChannel::AdvertisingChannel38));
self.receiving_app.set(processid);
let _ = self.radio.set_tx_power(app.tx_power);
self.radio
.receive_advertisement(RadioChannel::AdvertisingChannel38);
}
Some(BLEState::Scanning(RadioChannel::AdvertisingChannel38)) => {
app.process_status =
Some(BLEState::Scanning(RadioChannel::AdvertisingChannel39));
self.receiving_app.set(processid);
self.radio
.receive_advertisement(RadioChannel::AdvertisingChannel39);
}
Some(BLEState::Scanning(RadioChannel::AdvertisingChannel39)) => {
self.busy.set(false);
app.process_status = Some(BLEState::ScanningIdle);
app.set_next_alarm::<A::Frequency>(self.alarm.now().into_u32());
}
// Invalid state => don't care
_ => (),
}
});
self.reset_active_alarm();
});
}
}
// Callback from the radio once a TX event occur
impl<'a, B, A> ble_advertising::TxClient for BLE<'a, B, A>
where
B: ble_advertising::BleAdvertisementDriver<'a> + ble_advertising::BleConfig,
A: kernel::hil::time::Alarm<'a>,
{
// The Result<(), ErrorCode> indicates valid CRC or not, not used yet but could be used for
// re-transmissions for invalid CRCs
fn transmit_event(&self, buf: &'static mut [u8], _crc_ok: Result<(), ErrorCode>) {
self.kernel_tx.replace(buf);
self.sending_app.map(|processid| {
let _ = self.app.enter(processid, |app, kernel_data| {
match app.process_status {
Some(BLEState::Advertising(RadioChannel::AdvertisingChannel37)) => {
app.process_status =
Some(BLEState::Advertising(RadioChannel::AdvertisingChannel38));
self.sending_app.set(processid);
let _ = self.radio.set_tx_power(app.tx_power);
let _ = app.send_advertisement(
processid,
kernel_data,
self,
RadioChannel::AdvertisingChannel38,
);
}
Some(BLEState::Advertising(RadioChannel::AdvertisingChannel38)) => {
app.process_status =
Some(BLEState::Advertising(RadioChannel::AdvertisingChannel39));
self.sending_app.set(processid);
let _ = app.send_advertisement(
processid,
kernel_data,
self,
RadioChannel::AdvertisingChannel39,
);
}
Some(BLEState::Advertising(RadioChannel::AdvertisingChannel39)) => {
self.busy.set(false);
app.process_status = Some(BLEState::AdvertisingIdle);
app.set_next_alarm::<A::Frequency>(self.alarm.now().into_u32());
}
// Invalid state => don't care
_ => (),
}
});
self.reset_active_alarm();
});
}
}
// System Call implementation
impl<'a, B, A> SyscallDriver for BLE<'a, B, A>
where
B: ble_advertising::BleAdvertisementDriver<'a> + ble_advertising::BleConfig,
A: kernel::hil::time::Alarm<'a>,
{
fn command(
&self,
command_num: usize,
data: usize,
interval: usize,
processid: kernel::ProcessId,
) -> CommandReturn {
match command_num {
// Start periodic advertisements
0 => {
self.app
.enter(processid, |app, _| {
if let Some(BLEState::Idle) = app.process_status {
let pdu_type = data as AdvPduType;
match pdu_type {
ADV_IND | ADV_NONCONN_IND | ADV_SCAN_IND => {
app.pdu_type = pdu_type;
app.process_status = Some(BLEState::AdvertisingIdle);
app.random_nonce = self.alarm.now().into_u32();
app.advertisement_interval_ms = cmp::max(20, interval as u32);
app.set_next_alarm::<A::Frequency>(self.alarm.now().into_u32());
Ok(())
}
_ => Err(ErrorCode::INVAL),
}
} else {
Err(ErrorCode::BUSY)
}
})
.map_or_else(
|err| CommandReturn::failure(err.into()),
|res| match res {
Ok(()) => {
// must be called outside closure passed to grant region!
self.reset_active_alarm();
CommandReturn::success()
}
Err(e) => CommandReturn::failure(e),
},
)
}
// Stop periodic advertisements or passive scanning
1 => self
.app
.enter(processid, |app, _| match app.process_status {
Some(BLEState::AdvertisingIdle) | Some(BLEState::ScanningIdle) => {
app.process_status = Some(BLEState::Idle);
CommandReturn::success()
}
_ => CommandReturn::failure(ErrorCode::BUSY),
})
.unwrap_or_else(|err| err.into()),
// Configure transmitted power
// BLUETOOTH SPECIFICATION Version 4.2 [Vol 6, Part A], section 3
//
// Minimum Output Power: 0.01 mW (-20 dBm)
// Maximum Output Power: 10 mW (+10 dBm)
//
// data - Transmitting power in dBm
2 => {
self.app
.enter(processid, |app, _| {
if app.process_status != Some(BLEState::ScanningIdle)
&& app.process_status != Some(BLEState::AdvertisingIdle)
{
match data as u8 {
tx_power @ 0..=10 | tx_power @ 0xec..=0xff => {
// query the underlying chip if the power level is supported
let status = self.radio.set_tx_power(tx_power);
if let Ok(()) = status {
app.tx_power = tx_power;
}
status.into()
}
_ => CommandReturn::failure(ErrorCode::INVAL),
}
} else {
CommandReturn::failure(ErrorCode::BUSY)
}
})
.unwrap_or_else(|err| err.into())
}
// Passive scanning mode
5 => {
self.app
.enter(processid, |app, _| {
if let Some(BLEState::Idle) = app.process_status {
app.process_status = Some(BLEState::ScanningIdle);
app.set_next_alarm::<A::Frequency>(self.alarm.now().into_u32());
Ok(())
} else {
Err(ErrorCode::BUSY)
}
})
.map_or_else(
|err| err.into(),
|res| match res {
Ok(()) => {
// must be called outside closure passed to grant region!
self.reset_active_alarm();
CommandReturn::success()
}
Err(e) => CommandReturn::failure(e),
},
)
}
_ => CommandReturn::failure(ErrorCode::NOSUPPORT),
}
}
fn allocate_grant(&self, processid: ProcessId) -> Result<(), kernel::process::Error> {
self.app.enter(processid, |_, _| {})
}
}