imxrt10xx/dma.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Direct Memory Access (DMA) channels and multiplexer
//!
//! ## DMAMUX Channel Configuration Options
//!
//! | ENBL | TRIG | A_ON | Function | Mode |
//! |------|------|------|---------------------------------------------------------|------------------------|
//! | 0 | X | X | DMA channel is disabled | Disabled Mode |
//! | 1 | 0 | 0 | DMA channel is enabled with no triggering (transparent) | Normal Mode |
//! | 1 | 1 | 0 | DMA channel is enabled with triggering | Periodic Trigger Mode |
//! | 1 | 0 | 1 | DMA channel is always enabled | Always On Mode |
//! | 1 | 1 | 1 | DMA channel is always enabled with triggering | Always On Trigger Mode |
//!
//! Implementation assumptions:
//!
//! - No minor loop mapping, assuming we don't need to change addresses on minor loop runs.
//! - The driver exposes 32 DMA channels. This applies for nearly all i.MX RT 10xx chips, except for the 1011.
//! Accessing any DMA channel beyond 15 will index into reserved memory.
//!
//! When assigning DMA channels to peripherals, consider:
//!
//! - How you could use channels that are 16 channel IDs apart, and complete DMA transfers with signaling
//! from one DMA interrupt, instead of two separate interrupts.
//! - The first four DMA channels can be periodically scheduled from the four periodic interrupt timer (PIT)
//! channels. Consider reserving those first four channels if you need to regularly schedule DMA transfers
//! without CPU intervention.
//! - Channel priorities may come into play when preferring DMA channels. See the reference manual for more
//! information on channel priorities, and how the DMA controller use priorities for scheduling.
use kernel::utilities::{
cells::OptionalCell,
registers::{
self,
interfaces::{ReadWriteable, Readable, Writeable},
ReadOnly, ReadWrite, WriteOnly,
},
StaticRef,
};
use core::cell::Cell;
use core::mem;
use core::ops::Index;
use crate::ccm;
/// DMA Multiplexer.
///
/// The multiplexer is used for routing between DMA channels and hardware
/// peripherals. It's a detail of `DmaChannel`.
#[repr(C)]
struct DmaMultiplexerRegisters {
/// Channel configuration registers, one per channel.
chcfg: [ReadWrite<u32, ChannelConfiguration::Register>; 32],
}
const DMA_MUX_BASE: StaticRef<DmaMultiplexerRegisters> =
unsafe { StaticRef::new(0x400E_C000 as *const DmaMultiplexerRegisters) };
registers::register_bitfields![u32,
/// Each of the DMA channels can be independently enabled/disabled and associated
/// with one of the DMA slots (peripheral slots or always-on slots) in the system.
///
/// Note: Setting multiple CHCFG registers with the same source value will result in
/// unpredictable behavior. This is true, even if a channel is disabled (ENBL==0).
///
/// Note: Before changing the trigger or source settings, a DMA channel must be
/// disabled via CHCFGn[ENBL].
ChannelConfiguration [
/// Enables the channel for DMA Mux. The DMA has separate channel
/// enables/disables, which should be used to disable or reconfigure
/// a DMA channel.
ENBL OFFSET(31) NUMBITS(1) [],
/// Enables the periodic trigger capability for the triggered DMA channel.
///
/// 0b - Triggering is disabled. If triggering is disabled and ENBL is set,
/// the DMA Channel will simply route the specified source to the DMA channel.
/// (Normal mode)
///
/// 1b - Triggering is enabled. If triggering is enabled and ENBL is set,
/// the DMA_CH_MUX is in Periodic Trigger mode.
TRIG OFFSET(30) NUMBITS(1) [],
/// DMA Channel Always Enable
///
/// Enables the DMA Channel to be always ON.
/// If TRIG bit is set, the module will assert request on every trigger.
///
/// 0b - DMA Channel Always ON function is disabled
/// 1b - DMA Channel Always ON function is enabled
A_ON OFFSET(29) NUMBITS(1) [],
/// DMA Channel Source (Slot Number)
///
/// Specifies which DMA source, if any, is routed to a particular DMA channel.
/// See the "DMA MUX Mapping" table in the "Interrupts, DMA Events, and XBAR
/// Assignments" chapter for details about DMA source and channel information.
SOURCE OFFSET(0) NUMBITS(7) []
]
];
#[repr(C, align(32))]
struct TransferControlDescriptor {
saddr: ReadWrite<u32>,
soff: ReadWrite<u16>, // Signed number
attr: ReadWrite<u16, TransferAttributes::Register>,
nbytes: ReadWrite<u32>, // Assumes minor loop mapping is disabled (EMLM = 0)
slast: ReadWrite<u32>, // Signed number
daddr: ReadWrite<u32>,
doff: ReadWrite<u16>, // Signed number
citer: ReadWrite<u16>,
dlast_sga: ReadWrite<u32>, // Signed number
csr: ReadWrite<u16, ControlAndStatus::Register>,
biter: ReadWrite<u16>,
}
impl TransferControlDescriptor {
fn reset(&self) {
self.saddr.set(0);
self.soff.set(0);
self.attr.set(0);
self.nbytes.set(0);
self.slast.set(0);
self.daddr.set(0);
self.doff.set(0);
self.citer.set(0);
self.dlast_sga.set(0);
self.csr.set(0);
self.biter.set(0);
}
}
const _STATIC_ASSERT_TCD_32_BYTES: [u32; 1] =
[0; (32 == mem::size_of::<TransferControlDescriptor>()) as usize];
registers::register_bitfields![u16,
TransferAttributes [
SMOD OFFSET(11) NUMBITS(5) [],
SSIZE OFFSET(8) NUMBITS(3) [],
DMOD OFFSET(3) NUMBITS(5) [],
DSIZE OFFSET(0) NUMBITS(3) []
],
ControlAndStatus [
/// Bandwidth control.
///
/// Throttle bandwidth consumed by DMA.
BWC OFFSET(14) NUMBITS(2) [
/// No engine stalls
NoStalls = 0b00,
/// Stalls for 4 cycles after each R/W
FourCycles = 0b10,
/// Stalls for 8 cycles after each R/W
EightCycles = 0b11
],
/// Major loop link channel number.
///
/// If zero, then no channel-to-channel linking is performed
/// after major loop count exhaustion.
///
/// Otherwise, the DMA engine initiates a channel service request
/// at the channel defined here, setting START in that channel.
MAJORLINKCH OFFSET(8) NUMBITS(5) [],
/// Channel done.
///
/// Must be clear to write MAJORELINK or ESG
DONE OFFSET(7) NUMBITS(1) [],
/// Channel active
ACTIVE OFFSET(6) NUMBITS(1) [],
/// Enable channel-to-channel linking on major loop completion.
MAJORELINK OFFSET(5) NUMBITS(1) [],
/// Enable scatter/gatter.
ESG OFFSET(4) NUMBITS(1) [],
/// Disable request.
///
/// If set, DMA hardware clears ERQ when the current major iteration
/// count reaches zero.
DREQ OFFSET(3) NUMBITS(1) [],
/// Enable interrupt when major count is half complete.
INTHALF OFFSET(2) NUMBITS(1) [],
/// Enable an interrupt when major count is complete.
INTMAJOR OFFSET(1) NUMBITS(1) [],
/// Channel start.
///
/// When set, channel is requesting service. DMA hardware will clear this
/// after it starts execution.
START OFFSET(0) NUMBITS(1) []
]
];
/// Wrapper for channel priority registers.
///
/// Channel priority registers cannot be accessed with
/// normal channel indexes. This adapter makes it so that
/// we *can* access them with channel indexes by converting
/// the channel number to a reference to the priority
/// register.
#[repr(transparent)]
struct ChannelPriorityRegisters([ReadWrite<u8, ChannelPriority::Register>; 32]);
impl Index<usize> for ChannelPriorityRegisters {
type Output = ReadWrite<u8, ChannelPriority::Register>;
fn index(&self, channel: usize) -> &ReadWrite<u8, ChannelPriority::Register> {
// Pattern follows
//
// 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, ...
//
// for all channels < 32. NXP keeping us on our toes.
let idx = 4 * (channel / 4) + (3 - (channel % 4));
&self.0[idx]
}
}
registers::register_structs! {
/// DMA registers.
DmaRegisters {
/// Control Register
(0x000 => cr: ReadWrite<u32, Control::Register>),
/// Error Status Register
(0x004 => es: ReadOnly<u32, ErrorStatus::Register>),
(0x008 => _reserved0),
/// Enable Request Register
(0x00C => erq: ReadWrite<u32>),
(0x010 => _reserved1),
/// Enable Error Interrupt Register
(0x014 => eei: ReadWrite<u32>),
/// Clear Enable Error Interrupt Register
(0x018 => ceei: WriteOnly<u8, MemoryMappedChannel::Register>),
/// Set Enable Error Interrupt Register
(0x019 => seei: WriteOnly<u8, MemoryMappedChannel::Register>),
/// Clear Enable Request Register
(0x01A => cerq: WriteOnly<u8, MemoryMappedChannel::Register>),
/// Set Enable Request Register
(0x01B => serq: WriteOnly<u8, MemoryMappedChannel::Register>),
/// Clear DONE Status Bit Register
(0x01C => cdne: WriteOnly<u8, MemoryMappedChannel::Register>),
/// Set START Bit Register
(0x01D => ssrt: WriteOnly<u8, MemoryMappedChannel::Register>),
/// Clear Error Register
(0x01E => cerr: WriteOnly<u8, MemoryMappedChannel::Register>),
/// Clear Interrupt Request Register
(0x01F => cint: WriteOnly<u8, MemoryMappedChannel::Register>),
(0x020 => _reserved2),
/// Interrupt Request Register
(0x024 => int: ReadWrite<u32>),
(0x028 => _reserved3),
/// Error Register
(0x02C => err: ReadWrite<u32>),
(0x030 => _reserved4),
/// Hardware Request Status Register
(0x034 => hrs: ReadOnly<u32>),
(0x038 => _reserved5),
/// Enable Asynchronous Request in Stop Register
(0x044 => ears: ReadWrite<u32>),
(0x048 => _reserved6),
(0x0100 => dchpri: ChannelPriorityRegisters),
(0x0120 => _reserved7),
(0x1000 => tcd: [TransferControlDescriptor; 32]),
(0x1400 => @END),
}
}
registers::register_bitfields![u8,
/// Used in DCHPRI registers.
ChannelPriority [
/// Enable channel premption.
///
/// 0b - Channel n cannot be suspended by a higher priority channel's service request.
/// 1b - Channel n can be temporarily suspended by the service request of a higher priority channel.
ECP OFFSET(7) NUMBITS(1) [],
/// Disable Preempt Ability.
///
/// 0b - Channel n can suspend a lower priority channel.
/// 1b - Channel n cannot suspend any channel, regardless of channel priority.
DPA OFFSET(6) NUMBITS(1) [],
/// Channel current group priority.
///
/// Group priority assigned to this channel group when
/// fixed-priority arbitration is enabled. This field is
/// read- only; writes are ignored.
GRPPRI OFFSET(4) NUMBITS(2) [],
/// Channel arbitration priority.
CHPRI OFFSET(0) NUMBITS(4) []
],
/// Generic bitband register for CEEI, SEEI, CERQ, SERQ, ...
MemoryMappedChannel [
/// NoOp operation.
///
/// Disable all other bits in this register.
NOOP OFFSET(7) NUMBITS(1) [],
/// Perform this register's operation on all 32 channels.
ALL OFFSET(6) NUMBITS(1) [],
/// Channel number.
///
/// Specify the channel to act on.
CHANNEL OFFSET(0) NUMBITS(5) []
]
];
registers::register_bitfields![u32,
Control [
/// DMA active status.
ACTIVE OFFSET(31) NUMBITS(1) [],
/// Cancel the active transfer.
CX OFFSET(17) NUMBITS(1) [],
/// Error cancel transfer.
///
/// Like cancel transfer (CX), but it updates the error
/// status register (ES) for the channel. It optionally
/// generates an error interrupt.
ECX OFFSET(16) NUMBITS(1) [],
/// Channel group 1 priority.
///
/// Group 1 priority level when fixed priority group arbitration is enabled.
GRP1PRI OFFSET(10) NUMBITS(1) [],
/// Channel group 9 priority.
///
/// Group 0 priority level when fixed priority group arbitration is enabled.
GRP0PRI OFFSET(8) NUMBITS(1) [],
/// Enable minor loop mapping.
///
/// 0b - Disabled. TCDn.word2 is defined as a 32-bit NBYTES field.
/// 1b - Enabled. TCDn.word2 is redefined to include individual enable fields,
/// an offset field, and the NBYTES field. The individual enable fields allow
/// the minor loop offset to be applied to the source address, the destination
/// address, or both. The NBYTES field is reduced when either offset is enabled.
EMLM OFFSET(7) NUMBITS(1) [],
/// Continuous link mode.
CLM OFFSET(6) NUMBITS(1) [],
/// Halt DMA operations.
///
/// Writing 1 stalls the start of any new channels. Executing channels may complete. Write
/// 0 to resume channel execution.
HALT OFFSET(5) NUMBITS(1) [],
/// Halt on Error.
///
/// Any error sets HALT bit. Software must clear HALT.
HOE OFFSET(4) NUMBITS(1) [],
/// Enable round robin group arbitration.
///
/// 0b - Fixed priority arbitration is used for selection among the groups.
/// 1b - Round robin arbitration is used for selection among the groups.
ERGA OFFSET(3) NUMBITS(1) [],
/// Enable round robin channel arbitration.
///
/// 0b - Fixed priority arbitration is used for channel selection within each group.
/// 1b - Round robin arbitration is used for channel selection within each group.
ERCA OFFSET(2) NUMBITS(1) [],
/// Enable debug.
///
/// Set to stall the start of a new channel when in debug mode.
EDBG OFFSET(1) NUMBITS(1) []
],
ErrorStatus [
/// At least one ERR bit is set.
VLD OFFSET(31) NUMBITS(1) [],
/// Transfer canceled.
///
/// Last recorded entry was a cancelled transfer by error cancel transfer input.
ECX OFFSET(16) NUMBITS(1) [],
/// Group priority error.
///
/// Priority groups are not unique.
GPE OFFSET(15) NUMBITS(1) [],
/// Channel priority error.
///
/// Channel priorities within a group are not unique.
CPE OFFSET(14) NUMBITS(1) [],
/// Error channel number.
///
/// Channel number of last recorded error, excluding group or channel priority errors,
/// or last error canceled transfer.
ERRCHN OFFSET(8) NUMBITS(5) [],
/// Source address error.
///
/// Configuration error detected in the TCDn_SADDR field. TCDn_SADDR is inconsistent with TCDn_ATTR[SSIZE].
SAE OFFSET(7) NUMBITS(1) [],
/// Source offset error.
///
/// Configuration error detected in the TCDn_SOFF field. TCDn_SOFF is inconsistent with TCDn_ATTR[SSIZE].
SOE OFFSET(6) NUMBITS(1) [],
/// Destination address error.
///
/// Configuration error detected in the TCDn_DADDR field. TCDn_DADDR is inconsistent with TCDn_ATTR[DSIZE].
DAE OFFSET(5) NUMBITS(1) [],
/// Destination offset error.
///
/// Configuration error detected in the TCDn_DOFF field. TCDn_DOFF is inconsistent with TCDn_ATTR[DSIZE].
DOE OFFSET(4) NUMBITS(1) [],
/// NBYTES/CITER configuration error.
NCE OFFSET(3) NUMBITS(1) [],
/// Scatter/Gather Configuration Error.
SGE OFFSET(2) NUMBITS(1) [],
/// Source bus error.
SBE OFFSET(1) NUMBITS(1) [],
/// Destination bus error.
DBE OFFSET(0) NUMBITS(1) []
]
];
const DMA_BASE: StaticRef<DmaRegisters> =
unsafe { StaticRef::new(0x400E_8000 as *const DmaRegisters) };
/// A DMA channel.
///
/// `DmaChannel` can coordinate the transfer of data between buffers and
/// peripherals without processor intervention.
pub struct DmaChannel {
base: StaticRef<DmaRegisters>,
mux: StaticRef<DmaMultiplexerRegisters>,
channel: usize,
client: OptionalCell<&'static dyn DmaClient>,
hardware_source: Cell<Option<DmaHardwareSource>>,
}
/// Describes a type that can be transferred via DMA.
///
/// This trait is sealed and cannot be implemented outside of this
/// crate. However, it may be used outside of this crate.
pub trait DmaElement: private::Sealed {
/// An identifier describing the data transfer size
///
/// See TCD\[SSIZE\] and TCD\[DSIZE\] for more information.
#[doc(hidden)] // Crate implementation detail
const DATA_TRANSFER_ID: u16;
}
/// Details for the sealed `DmaElement` trait.
///
/// See the Rust API Guidelines, and the Sealed trait pattern,
/// for more information.
///
/// <https://rust-lang.github.io/api-guidelines/future-proofing.html#sealed-traits-protect-against-downstream-implementations-c-sealed>
mod private {
pub trait Sealed {}
impl Sealed for u8 {}
impl Sealed for u16 {}
impl Sealed for u32 {}
impl Sealed for u64 {}
}
impl DmaElement for u8 {
const DATA_TRANSFER_ID: u16 = 0;
}
impl DmaElement for u16 {
const DATA_TRANSFER_ID: u16 = 1;
}
impl DmaElement for u32 {
const DATA_TRANSFER_ID: u16 = 2;
}
impl DmaElement for u64 {
const DATA_TRANSFER_ID: u16 = 3;
}
impl DmaChannel {
/// Allocate a new DMA channel.
///
/// Note that channels 0 through 3 are the only channels capable of periodic
/// transfers. Consider reserving these channels for that use case.
pub(crate) const fn new(channel: usize) -> Self {
DmaChannel {
base: DMA_BASE,
mux: DMA_MUX_BASE,
channel,
client: OptionalCell::empty(),
hardware_source: Cell::new(None),
}
}
/// Reset the DMA channel's TCD.
fn reset_tcd(&self) {
self.base.tcd[self.channel].reset();
}
/// Set the client using this DMA channel.
///
/// This should be invoked by the client itself.
pub(crate) fn set_client(&self, client: &'static dyn DmaClient, source: DmaHardwareSource) {
self.client.set(client);
self.trigger_from_hardware(source);
}
/// Set this DMA channel to trigger from a hardware source.
fn trigger_from_hardware(&self, source: DmaHardwareSource) {
let chcfg = &self.mux.chcfg[self.channel];
chcfg.set(0);
chcfg.write(
ChannelConfiguration::ENBL::SET + ChannelConfiguration::SOURCE.val(source as u32),
);
self.hardware_source.set(Some(source));
}
/// Manually start the DMA transfer.
///
/// A manual trigger is useful for memory-to-memory DMA transfers. If you're sending
/// or receiving data from a peripheral, use `trigger_from_hardware()`.
pub fn trigger_manually(&self) {
self.base
.ssrt
.write(MemoryMappedChannel::CHANNEL.val(self.channel as u8));
}
/// Returns `true` is this DMA channel is actively receiving a hardware signal.
///
/// A hardware signal comes from an associated peripheral, indicating a request
/// for transfer. It's important to deassert the hardware before disabling a
/// DMA channel. This gives you an opportunity to check for hardware signal.
///
/// Returns `false` if the DMA channel is disabled, or if there's no associated
/// hardware (see `trigger_from_hardware()`).
pub fn is_hardware_signaling(&self) -> bool {
self.base.hrs.get() & (1 << self.channel) != 0
}
/// Enables this DMA channel.
pub fn enable(&self) {
self.base
.serq
.write(MemoryMappedChannel::CHANNEL.val(self.channel as u8));
}
/// Disables this DMA channel.
pub fn disable(&self) {
self.base
.cerq
.write(MemoryMappedChannel::CHANNEL.val(self.channel as u8));
}
/// Clear the interrupt associated with this DMA channel.
fn clear_interrupt(&self) {
self.base
.cint
.write(MemoryMappedChannel::CHANNEL.val(self.channel as u8));
}
/// Returns `true` if this DMA channel generated an interrupt.
pub fn is_interrupt(&self) -> bool {
self.base.int.get() & (1 << self.channel) != 0
}
/// Returns `true` if this DMA channel has completed its transfer.
pub fn is_complete(&self) -> bool {
self.base.tcd[self.channel]
.csr
.is_set(ControlAndStatus::DONE)
}
/// Clears the completion of this DMA channel.
fn clear_complete(&self) {
self.base
.cdne
.write(MemoryMappedChannel::CHANNEL.val(self.channel as u8));
}
/// Returns `true` if this DMA channel is in an error state.
pub fn is_error(&self) -> bool {
self.base.err.get() & (1 << self.channel) != 0
}
/// Clears the error flag for this channel.
fn clear_error(&self) {
self.base
.cerr
.write(MemoryMappedChannel::CHANNEL.val(self.channel as u8));
}
/// Returns `true` if this DMA channel is in an active transfer.
pub fn is_active(&self) -> bool {
self.base.tcd[self.channel]
.csr
.is_set(ControlAndStatus::ACTIVE)
}
/// Set a buffer of data as the source of a DMA transfer.
///
/// Safety: caller is responsible for ensuring the buffer's lifetime is
/// valid for the life of the transfer.
pub unsafe fn set_source_buffer<T: DmaElement>(&self, buffer: &[T]) {
let tcd = &self.base.tcd[self.channel];
tcd.saddr.set(buffer.as_ptr() as u32);
tcd.soff.set(mem::size_of::<T>() as u16);
tcd.attr.modify(
TransferAttributes::SSIZE.val(T::DATA_TRANSFER_ID) + TransferAttributes::SMOD.val(0),
);
tcd.nbytes.set(mem::size_of::<T>() as u32);
tcd.slast.set((-(buffer.len() as i32)) as u32);
let iterations: u16 = buffer.len() as u16;
tcd.biter.set(iterations);
tcd.citer.set(iterations);
}
/// Set a buffer of data as the destination of a DMA receive.
///
/// Safety: caller is responsible for ensuring the buffer's lifetime is
/// valid for the life of the transfer.
pub unsafe fn set_destination_buffer<T: DmaElement>(&self, buffer: &mut [T]) {
let tcd = &self.base.tcd[self.channel];
tcd.daddr.set(buffer.as_mut_ptr() as u32);
tcd.doff.set(mem::size_of::<T>() as u16);
tcd.attr.modify(
TransferAttributes::DSIZE.val(T::DATA_TRANSFER_ID) + TransferAttributes::DMOD.val(0),
);
tcd.nbytes.set(mem::size_of::<T>() as u32);
tcd.dlast_sga.set((-(buffer.len() as i32)) as u32);
let iterations: u16 = buffer.len() as u16;
tcd.biter.set(iterations);
tcd.citer.set(iterations);
}
/// Set the source of a DMA transfer.
///
/// Use `set_source` if the transfer source is a peripheral register.
///
/// Safety: caller responsible for ensuring pointer's lifetime is valid
/// for the transfer.
pub unsafe fn set_source<T: DmaElement>(&self, source: *const T) {
let tcd = &self.base.tcd[self.channel];
tcd.saddr.set(source as u32);
tcd.soff.set(0);
tcd.attr.modify(
TransferAttributes::SSIZE.val(T::DATA_TRANSFER_ID) + TransferAttributes::SMOD.val(0),
);
tcd.nbytes.set(mem::size_of::<T>() as u32);
tcd.slast.set(0);
}
/// Set the destination of a DMA transfer.
///
/// Use `set_destination` if the tranfer destination is a peripheral register.
///
/// Safety: caller responsible for ensuring pointer's lifetime is valid for
/// the transfer.
pub unsafe fn set_destination<T: DmaElement>(&self, dest: *const T) {
let tcd = &self.base.tcd[self.channel];
tcd.daddr.set(dest as u32);
tcd.doff.set(0);
tcd.attr.modify(
TransferAttributes::DSIZE.val(T::DATA_TRANSFER_ID) + TransferAttributes::DMOD.val(0),
);
tcd.nbytes.set(mem::size_of::<T>() as u32);
tcd.dlast_sga.set(0);
}
/// Configures the DMA channel to automatically disable when the transfer completes.
pub fn set_disable_on_completion(&self, dreq: bool) {
self.base.tcd[self.channel]
.csr
.modify(ControlAndStatus::DREQ.val(dreq as u16));
}
/// Configures the DMA channel to interrupt when complete, or when there
/// is an error.
pub fn set_interrupt_on_completion(&self, intr: bool) {
self.base.tcd[self.channel]
.csr
.modify(ControlAndStatus::INTMAJOR.val(intr as u16));
if intr {
self.base
.seei
.write(MemoryMappedChannel::CHANNEL.val(self.channel as u8));
} else {
self.base
.ceei
.write(MemoryMappedChannel::CHANNEL.val(self.channel as u8));
}
}
/// Handle an interrupt.
///
/// Assumes that the caller knows that this DMA channel was the source of the
/// interrupt, or the cause of a DMA error. See `is_interrupt()` and `is_error()`.
/// The implementation panics if there is neither an error, or an interrupt.
pub fn handle_interrupt(&self) {
self.clear_interrupt();
let hardware_source = self.hardware_source.clone().get().unwrap();
let result = if self.is_error() {
self.clear_error();
self.clear_complete();
self.disable();
Err(hardware_source)
} else if self.is_complete() {
self.clear_complete();
Ok(hardware_source)
} else {
unreachable!(
"DMA Channel {} should either be complete, or in an error state",
self.channel
);
};
self.client.map(|client| client.transfer_complete(result));
}
}
/// Indicates success or failure when executing a DMA transfer
///
/// An `Ok(source)` describes a successful DMA transfer to / from the hardware
/// source. An `Err(source)` describes a failed DMA transfer.
pub type Result = core::result::Result<DmaHardwareSource, DmaHardwareSource>;
/// A type that responds to DMA completion events
pub trait DmaClient {
/// Handle the completion of a DMA transfer, which either succeeded or failed.
fn transfer_complete(&self, source: Result);
}
/// DMA hardware sources.
///
/// Extend this to add support for more DMA-powered peripherals.
/// To understand where the numbers come from, see Chapter 4,
/// DMA Mux, to find the DMA request signals (iMXRT1060RM, Rev 2).
#[derive(Clone, Copy, PartialEq, Eq)]
#[repr(u32)]
pub enum DmaHardwareSource {
Lpuart1Transfer = 2,
Lpuart1Receive = 3,
Lpuart2Transfer = 66,
Lpuart2Receive = 67,
}
/// The DMA peripheral exposes DMA channels.
pub struct Dma<'a> {
/// The DMA channels
pub channels: [DmaChannel; 32],
/// DMA clock gate
clock_gate: ccm::PeripheralClock<'a>,
/// DMA registers.
registers: StaticRef<DmaRegisters>,
}
impl<'a> Dma<'a> {
/// Create a DMA peripheral.
pub const fn new(ccm: &'a ccm::Ccm) -> Self {
Dma {
channels: DMA_CHANNELS,
clock_gate: ccm::PeripheralClock::ccgr5(ccm, ccm::HCLK5::DMA),
registers: DMA_BASE,
}
}
/// Returns the interface that controls the DMA clock
pub fn clock(&self) -> &(impl kernel::platform::chip::ClockInterface + '_) {
&self.clock_gate
}
/// Reset all DMA transfer control descriptors.
///
/// You should reset these descriptors shortly after system
/// initialization, and before using a DMA channel.
pub fn reset_tcds(&self) {
for channel in &self.channels {
channel.reset_tcd();
}
}
/// Returns a DMA channel that has an error.
///
/// This will be faster than searching all DMA channels
/// for an error flag. However, if more than one DMA channel
/// has an error, there's no guarantee which will be returned
/// first. You should continue calling, and clearing errors,
/// until this returns `None`.
pub fn error_channel(&self) -> Option<&DmaChannel> {
let es = self.registers.es.extract();
es.is_set(ErrorStatus::VLD).then(|| {
let idx = es.read(ErrorStatus::ERRCHN) as usize;
&self.channels[idx]
})
}
}
/// Helper constant for allocating DMA channels.
const DMA_CHANNELS: [DmaChannel; 32] = [
DmaChannel::new(0),
DmaChannel::new(1),
DmaChannel::new(2),
DmaChannel::new(3),
DmaChannel::new(4),
DmaChannel::new(5),
DmaChannel::new(6),
DmaChannel::new(7),
DmaChannel::new(8),
DmaChannel::new(9),
DmaChannel::new(10),
DmaChannel::new(11),
DmaChannel::new(12),
DmaChannel::new(13),
DmaChannel::new(14),
DmaChannel::new(15),
DmaChannel::new(16),
DmaChannel::new(17),
DmaChannel::new(18),
DmaChannel::new(19),
DmaChannel::new(20),
DmaChannel::new(21),
DmaChannel::new(22),
DmaChannel::new(23),
DmaChannel::new(24),
DmaChannel::new(25),
DmaChannel::new(26),
DmaChannel::new(27),
DmaChannel::new(28),
DmaChannel::new(29),
DmaChannel::new(30),
DmaChannel::new(31),
];