capsules_extra/usb/ctap.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Client to Authenticator Protocol CTAPv2 over USB HID
//!
//! Based on the spec avaliable at: <https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-client-to-authenticator-protocol-v2.0-id-20180227.html>
use core::cmp;
use super::descriptors;
use super::descriptors::Buffer64;
use super::descriptors::DescriptorType;
use super::descriptors::EndpointAddress;
use super::descriptors::EndpointDescriptor;
use super::descriptors::HIDCountryCode;
use super::descriptors::HIDDescriptor;
use super::descriptors::HIDSubordinateDescriptor;
use super::descriptors::InterfaceDescriptor;
use super::descriptors::ReportDescriptor;
use super::descriptors::TransferDirection;
use super::usbc_client_ctrl::ClientCtrl;
use kernel::hil;
use kernel::hil::usb::TransferType;
use kernel::utilities::cells::OptionalCell;
use kernel::utilities::cells::TakeCell;
use kernel::ErrorCode;
/// Use 1 Interrupt transfer IN/OUT endpoint
const ENDPOINT_NUM: usize = 1;
const OUT_BUFFER: usize = 0;
const IN_BUFFER: usize = 1;
static LANGUAGES: &[u16; 1] = &[
0x0409, // English (United States)
];
/// Max packet size specified by spec
pub const MAX_CTRL_PACKET_SIZE: u8 = 64;
const N_ENDPOINTS: usize = 2;
/// The HID report descriptor for CTAP
/// This is a combination of:
/// - the CTAP spec, example 8
/// - USB HID spec examples
/// Plus it matches: <https://chromium.googlesource.com/chromiumos/platform2/+/master/u2fd/u2fhid.cc>
static REPORT_DESCRIPTOR: &[u8] = &[
0x06, 0xD0, 0xF1, // HID_UsagePage ( FIDO_USAGE_PAGE ),
0x09, 0x01, // HID_Usage ( FIDO_USAGE_CTAPHID ),
0xA1, 0x01, // HID_Collection ( HID_Application ),
0x09, 0x20, // HID_Usage ( FIDO_USAGE_DATA_IN ),
0x15, 0x00, // HID_LogicalMin ( 0 ),
0x26, 0xFF, 0x00, // HID_LogicalMaxS ( 0xff ),
0x75, 0x08, // HID_ReportSize ( 8 ),
0x95, 0x40, // HID_ReportCount ( HID_INPUT_REPORT_BYTES ),
0x81, 0x02, // HID_Input ( HID_Data | HID_Absolute | HID_Variable ),
0x09, 0x21, // HID_Usage ( FIDO_USAGE_DATA_OUT ),
0x15, 0x00, // HID_LogicalMin ( 0 ),
0x26, 0xFF, 0x00, // HID_LogicalMaxS ( 0xff ),
0x75, 0x08, // HID_ReportSize ( 8 ),
0x95, 0x40, // HID_ReportCount ( HID_OUTPUT_REPORT_BYTES ),
0x91, 0x02, // HID_Output ( HID_Data | HID_Absolute | HID_Variable ),
0xC0, // HID_EndCollection
];
static REPORT: ReportDescriptor<'static> = ReportDescriptor {
desc: REPORT_DESCRIPTOR,
};
static SUB_HID_DESCRIPTOR: &[HIDSubordinateDescriptor] = &[HIDSubordinateDescriptor {
typ: DescriptorType::Report,
len: REPORT_DESCRIPTOR.len() as u16,
}];
static HID_DESCRIPTOR: HIDDescriptor<'static> = HIDDescriptor {
hid_class: 0x0110,
country_code: HIDCountryCode::NotSupported,
sub_descriptors: SUB_HID_DESCRIPTOR,
};
/// Implementation of the CTAP HID (Human Interface Device)
pub struct CtapHid<'a, U: 'a> {
/// Helper USB client library for handling many USB operations.
client_ctrl: ClientCtrl<'a, 'static, U>,
/// 64 byte buffers for each endpoint.
buffers: [Buffer64; N_ENDPOINTS],
client: OptionalCell<&'a dyn hil::usb_hid::Client<'a, [u8; 64]>>,
/// A buffer to hold the data we want to send
send_buffer: TakeCell<'static, [u8; 64]>,
/// A holder for the buffer to receive bytes into. We use this as a flag as
/// well, if we have a buffer then we are actively doing a receive.
recv_buffer: TakeCell<'static, [u8; 64]>,
}
impl<'a, U: hil::usb::UsbController<'a>> CtapHid<'a, U> {
pub fn new(
controller: &'a U,
vendor_id: u16,
product_id: u16,
strings: &'static [&'static str; 3],
) -> Self {
let interfaces: &mut [InterfaceDescriptor] = &mut [InterfaceDescriptor {
interface_number: 0,
interface_class: 0x03, // HID
interface_subclass: 0x00, // No subcall
interface_protocol: 0x00, // No protocol
..InterfaceDescriptor::default()
}];
let endpoints: &[&[EndpointDescriptor]] = &[&[
EndpointDescriptor {
endpoint_address: EndpointAddress::new_const(
ENDPOINT_NUM,
TransferDirection::DeviceToHost,
),
transfer_type: TransferType::Interrupt,
max_packet_size: 64,
interval: 5,
},
EndpointDescriptor {
endpoint_address: EndpointAddress::new_const(
ENDPOINT_NUM,
TransferDirection::HostToDevice,
),
transfer_type: TransferType::Interrupt,
max_packet_size: 64,
interval: 5,
},
]];
let (device_descriptor_buffer, other_descriptor_buffer) =
descriptors::create_descriptor_buffers(
descriptors::DeviceDescriptor {
vendor_id,
product_id,
manufacturer_string: 1,
product_string: 2,
serial_number_string: 3,
class: 0x03, // Class: HID
max_packet_size_ep0: MAX_CTRL_PACKET_SIZE,
..descriptors::DeviceDescriptor::default()
},
descriptors::ConfigurationDescriptor::default(),
interfaces,
endpoints,
Some(&HID_DESCRIPTOR),
None,
);
CtapHid {
client_ctrl: ClientCtrl::new(
controller,
device_descriptor_buffer,
other_descriptor_buffer,
Some(&HID_DESCRIPTOR),
Some(&REPORT),
LANGUAGES,
strings,
),
buffers: [Buffer64::default(), Buffer64::default()],
client: OptionalCell::empty(),
send_buffer: TakeCell::empty(),
recv_buffer: TakeCell::empty(),
}
}
#[inline]
fn controller(&self) -> &'a U {
self.client_ctrl.controller()
}
pub fn set_client(&'a self, client: &'a dyn hil::usb_hid::Client<'a, [u8; 64]>) {
self.client.set(client);
}
}
impl<'a, U: hil::usb::UsbController<'a>> hil::usb_hid::UsbHid<'a, [u8; 64]> for CtapHid<'a, U> {
fn send_buffer(
&'a self,
send: &'static mut [u8; 64],
) -> Result<usize, (ErrorCode, &'static mut [u8; 64])> {
let len = send.len();
self.send_buffer.replace(send);
self.controller().endpoint_resume_in(ENDPOINT_NUM);
Ok(len)
}
fn send_cancel(&'a self) -> Result<&'static mut [u8; 64], ErrorCode> {
match self.send_buffer.take() {
Some(buf) => Ok(buf),
None => Err(ErrorCode::BUSY),
}
}
fn receive_buffer(
&'a self,
recv: &'static mut [u8; 64],
) -> Result<(), (ErrorCode, &'static mut [u8; 64])> {
self.recv_buffer.replace(recv);
self.controller().endpoint_resume_out(ENDPOINT_NUM);
Ok(())
}
fn receive_cancel(&'a self) -> Result<&'static mut [u8; 64], ErrorCode> {
match self.recv_buffer.take() {
Some(buf) => Ok(buf),
None => Err(ErrorCode::BUSY),
}
}
}
impl<'a, U: hil::usb::UsbController<'a>> hil::usb::Client<'a> for CtapHid<'a, U> {
fn enable(&'a self) {
// Set up the default control endpoint
self.client_ctrl.enable();
// Setup buffers for IN and OUT data transfer.
self.controller()
.endpoint_set_out_buffer(ENDPOINT_NUM, &self.buffers[OUT_BUFFER].buf);
self.controller()
.endpoint_set_in_buffer(ENDPOINT_NUM, &self.buffers[IN_BUFFER].buf);
self.controller()
.endpoint_in_out_enable(TransferType::Interrupt, ENDPOINT_NUM);
}
fn attach(&'a self) {
self.client_ctrl.attach();
}
fn bus_reset(&'a self) {}
/// Handle a Control Setup transaction.
fn ctrl_setup(&'a self, endpoint: usize) -> hil::usb::CtrlSetupResult {
self.client_ctrl.ctrl_setup(endpoint)
}
/// Handle a Control In transaction
fn ctrl_in(&'a self, endpoint: usize) -> hil::usb::CtrlInResult {
self.client_ctrl.ctrl_in(endpoint)
}
/// Handle a Control Out transaction
fn ctrl_out(&'a self, endpoint: usize, packet_bytes: u32) -> hil::usb::CtrlOutResult {
self.client_ctrl.ctrl_out(endpoint, packet_bytes)
}
fn ctrl_status(&'a self, endpoint: usize) {
self.client_ctrl.ctrl_status(endpoint)
}
/// Handle the completion of a Control transfer
fn ctrl_status_complete(&'a self, endpoint: usize) {
if self.send_buffer.is_some() {
self.controller().endpoint_resume_in(ENDPOINT_NUM);
}
self.client_ctrl.ctrl_status_complete(endpoint)
}
/// Handle a Bulk/Interrupt IN transaction.
///
/// This is called when we can send data to the host. It should get called
/// when we tell the controller we want to resume the IN endpoint (meaning
/// we know we have data to send) and afterwards until we return
/// `hil::usb::InResult::Delay` from this function. That means we can use
/// this as a callback to mean that the transmission finished by waiting
/// until this function is called when we don't have anything left to send.
fn packet_in(&'a self, transfer_type: TransferType, _endpoint: usize) -> hil::usb::InResult {
match transfer_type {
TransferType::Interrupt => {
self.send_buffer
.take()
.map_or(hil::usb::InResult::Delay, |buf| {
// Get packet that we have shared with the underlying
// USB stack to copy the tx into.
let packet = &self.buffers[IN_BUFFER].buf;
// Copy from the TX buffer to the outgoing USB packet.
for i in 0..64 {
packet[i].set(buf[i]);
}
// Put the TX buffer back so we can keep sending from it.
self.send_buffer.replace(buf);
// Return that we have data to send.
hil::usb::InResult::Packet(64)
})
}
TransferType::Bulk | TransferType::Control | TransferType::Isochronous => {
panic!("Transfer protocol not supported by CTAP v2");
}
}
}
/// Handle a Bulk/Interrupt OUT transaction
///
/// This is data going from the host to the device (us)
fn packet_out(
&'a self,
transfer_type: TransferType,
endpoint: usize,
packet_bytes: u32,
) -> hil::usb::OutResult {
match transfer_type {
TransferType::Interrupt => {
// If we have a receive buffer we can copy the incoming data in.
// If we do not have a buffer, then we apply back pressure by
// returning `hil::usb::OutResult::Delay` to the USB stack until
// we get a receive call.
self.recv_buffer
.take()
.map_or(hil::usb::OutResult::Delay, |buf| {
// How many more bytes can we store in our RX buffer?
let copy_length = cmp::min(packet_bytes as usize, buf.len());
// Do the copy into the RX buffer.
let packet = &self.buffers[OUT_BUFFER].buf;
for i in 0..copy_length {
buf[i] = packet[i].get();
}
// Notify the client
self.client.map(move |client| {
client.packet_received(Ok(()), buf, endpoint);
});
hil::usb::OutResult::Ok
})
}
TransferType::Bulk | TransferType::Control | TransferType::Isochronous => {
panic!("Transfer protocol not supported by CTAP v2");
}
}
}
fn packet_transmitted(&'a self, endpoint: usize) {
self.send_buffer.take().map(|buf| {
self.client.map(move |client| {
client.packet_transmitted(Ok(()), buf, endpoint);
});
});
}
}