capsules_core/
rng.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! Library of randomness structures.
//!
//! A library for randomness structures including a system call driver
//! for userspace applications to request randomness, entropy
//! conversion, entropy to randomness conversion, and synchronous
//! random number generation.
//!
//!
//! The RNG accepts a user-defined callback and buffer to hold received
//! randomness. A single command starts the RNG, the callback is called when the
//! requested amount of randomness is received, or the buffer is filled.
//!
//! Usage
//! -----
//!
//! ```rust,ignore
//! # use kernel::static_init;
//!
//! let rng = static_init!(
//!     capsules::rng::RngDriver<'static, sam4l::trng::Trng>,
//!     capsules::rng::RngDriver::new(&sam4l::trng::TRNG, board_kernel.create_grant(&grant_cap)),
//! );
//! sam4l::trng::TRNG.set_client(rng);
//! ```

use core::cell::Cell;

use kernel::grant::{AllowRoCount, AllowRwCount, Grant, UpcallCount};
use kernel::hil::entropy;
use kernel::hil::entropy::{Entropy32, Entropy8};
use kernel::hil::rng;
use kernel::hil::rng::{Client, Continue, Random, Rng};
use kernel::processbuffer::WriteableProcessBuffer;
use kernel::syscall::{CommandReturn, SyscallDriver};
use kernel::utilities::cells::OptionalCell;
use kernel::{ErrorCode, ProcessId};

/// Syscall driver number.
use crate::driver;
pub const DRIVER_NUM: usize = driver::NUM::Rng as usize;

/// Ids for read-write allow buffers
mod rw_allow {
    pub const BUFFER: usize = 0;
    /// The number of allow buffers the kernel stores for this grant
    pub const COUNT: u8 = 1;
}

#[derive(Default)]
pub struct App {
    remaining: usize,
    idx: usize,
}

pub struct RngDriver<'a, R: Rng<'a>> {
    rng: &'a R,
    apps: Grant<App, UpcallCount<1>, AllowRoCount<0>, AllowRwCount<{ rw_allow::COUNT }>>,
    getting_randomness: Cell<bool>,
}

impl<'a, R: Rng<'a>> RngDriver<'a, R> {
    pub fn new(
        rng: &'a R,
        grant: Grant<App, UpcallCount<1>, AllowRoCount<0>, AllowRwCount<{ rw_allow::COUNT }>>,
    ) -> Self {
        Self {
            rng,
            apps: grant,
            getting_randomness: Cell::new(false),
        }
    }
}

impl<'a, R: Rng<'a>> rng::Client for RngDriver<'a, R> {
    fn randomness_available(
        &self,
        randomness: &mut dyn Iterator<Item = u32>,
        _error: Result<(), ErrorCode>,
    ) -> rng::Continue {
        let mut done = true;
        for cntr in self.apps.iter() {
            cntr.enter(|app, kernel_data| {
                // Check if this app needs random values.
                if app.remaining > 0 {
                    // Provide the current application values to the closure
                    let (oldidx, oldremaining) = (app.idx, app.remaining);

                    let (newidx, newremaining) = kernel_data
                        .get_readwrite_processbuffer(rw_allow::BUFFER)
                        .and_then(|buffer| {
                            buffer.mut_enter(|buffer| {
                                let mut idx = oldidx;
                                let mut remaining = oldremaining;

                                // Check that the app is not asking for more than can
                                // fit in the provided buffer
                                if buffer.len() < idx {
                                    // The buffer does not fit at all
                                    // anymore (the app must've swapped
                                    // buffers), end the operation
                                    return (0, 0);
                                } else if buffer.len() < idx + remaining {
                                    remaining = buffer.len() - idx;
                                }

                                // Add all available and requested randomness to the app buffer.

                                // 1. Slice buffer to start from current idx
                                let buf = &buffer[idx..(idx + remaining)];
                                // 2. Take at most as many random samples as needed to fill the buffer
                                //    (if app.remaining is not word-sized, take an extra one).
                                let remaining_ints = if remaining % 4 == 0 {
                                    remaining / 4
                                } else {
                                    remaining / 4 + 1
                                };

                                // 3. Zip over the randomness iterator and chunks
                                //    of up to 4 bytes from the buffer.
                                for (inp, outs) in
                                    randomness.take(remaining_ints).zip(buf.chunks(4))
                                {
                                    // 4. For each word of randomness input, update
                                    //    the remaining and idx and add to buffer.
                                    let inbytes = u32::to_le_bytes(inp);
                                    outs.iter().zip(inbytes.iter()).for_each(|(out, inb)| {
                                        out.set(*inb);
                                        remaining -= 1;
                                        idx += 1;
                                    });
                                }

                                (idx, remaining)
                            })
                        })
                        .unwrap_or(
                            // If the process is no longer alive
                            // (or this is a default AppSlice),
                            // set the idx and remaining values of
                            // this app to (0, 0)
                            (0, 0),
                        );

                    // Store the updated values in the application
                    app.idx = newidx;
                    app.remaining = newremaining;

                    if app.remaining > 0 {
                        done = false;
                    } else {
                        kernel_data.schedule_upcall(0, (0, newidx, 0)).ok();
                    }
                }
            });

            // Check if done switched to false. If it did, then that app
            // didn't get enough random, so there's no way there is more for
            // other apps.
            if !done {
                break;
            }
        }

        if done {
            self.getting_randomness.set(false);
            rng::Continue::Done
        } else {
            rng::Continue::More
        }
    }
}

impl<'a, R: Rng<'a>> SyscallDriver for RngDriver<'a, R> {
    fn command(
        &self,
        command_num: usize,
        data: usize,
        _: usize,
        processid: ProcessId,
    ) -> CommandReturn {
        match command_num {
            // Driver existence check
            0 => CommandReturn::success(),

            // Ask for a given number of random bytes
            1 => {
                let mut needs_get = false;
                let result = self
                    .apps
                    .enter(processid, |app, _| {
                        app.remaining = data;
                        app.idx = 0;

                        // Assume that the process has a callback & slice
                        // set. It might die or revoke them before the
                        // result arrives anyways
                        if !self.getting_randomness.get() {
                            self.getting_randomness.set(true);
                            needs_get = true;
                        }

                        CommandReturn::success()
                    })
                    .unwrap_or_else(|err| CommandReturn::failure(err.into()));
                if needs_get {
                    let _ = self.rng.get();
                }
                result
            }
            _ => CommandReturn::failure(ErrorCode::NOSUPPORT),
        }
    }

    fn allocate_grant(&self, processid: ProcessId) -> Result<(), kernel::process::Error> {
        self.apps.enter(processid, |_, _| {})
    }
}

pub struct Entropy32ToRandom<'a, E: Entropy32<'a>> {
    egen: &'a E,
    client: OptionalCell<&'a dyn rng::Client>,
}

impl<'a, E: Entropy32<'a>> Entropy32ToRandom<'a, E> {
    pub fn new(egen: &'a E) -> Self {
        Self {
            egen,
            client: OptionalCell::empty(),
        }
    }
}

impl<'a, E: Entropy32<'a>> Rng<'a> for Entropy32ToRandom<'a, E> {
    fn get(&self) -> Result<(), ErrorCode> {
        self.egen.get()
    }

    fn cancel(&self) -> Result<(), ErrorCode> {
        self.egen.cancel()
    }

    fn set_client(&'a self, client: &'a dyn rng::Client) {
        self.egen.set_client(self);
        self.client.set(client);
    }
}

impl<'a, E: Entropy32<'a>> entropy::Client32 for Entropy32ToRandom<'a, E> {
    fn entropy_available(
        &self,
        entropy: &mut dyn Iterator<Item = u32>,
        error: Result<(), ErrorCode>,
    ) -> entropy::Continue {
        self.client.map_or(entropy::Continue::Done, |client| {
            if error != Ok(()) {
                match client.randomness_available(&mut Entropy32ToRandomIter(entropy), error) {
                    rng::Continue::More => entropy::Continue::More,
                    rng::Continue::Done => entropy::Continue::Done,
                }
            } else {
                match client.randomness_available(&mut Entropy32ToRandomIter(entropy), Ok(())) {
                    rng::Continue::More => entropy::Continue::More,
                    rng::Continue::Done => entropy::Continue::Done,
                }
            }
        })
    }
}

struct Entropy32ToRandomIter<'a>(&'a mut dyn Iterator<Item = u32>);

impl Iterator for Entropy32ToRandomIter<'_> {
    type Item = u32;

    fn next(&mut self) -> Option<u32> {
        self.0.next()
    }
}

pub struct Entropy8To32<'a, E: Entropy8<'a>> {
    egen: &'a E,
    client: OptionalCell<&'a dyn entropy::Client32>,
    count: Cell<usize>,
    bytes: Cell<u32>,
}

impl<'a, E: Entropy8<'a>> Entropy8To32<'a, E> {
    pub fn new(egen: &'a E) -> Self {
        Self {
            egen,
            client: OptionalCell::empty(),
            count: Cell::new(0),
            bytes: Cell::new(0),
        }
    }
}

impl<'a, E: Entropy8<'a>> Entropy32<'a> for Entropy8To32<'a, E> {
    fn get(&self) -> Result<(), ErrorCode> {
        self.egen.get()
    }

    /// Cancel acquisition of random numbers.
    ///
    /// There are two valid return values:
    ///   - Ok(()): an outstanding request from `get` has been cancelled,
    ///     or there was no outstanding request. No `randomness_available`
    ///     callback will be issued.
    ///   - FAIL: There will be a randomness_available callback, which
    ///     may or may not return an error code.
    fn cancel(&self) -> Result<(), ErrorCode> {
        self.egen.cancel()
    }

    fn set_client(&'a self, client: &'a dyn entropy::Client32) {
        self.egen.set_client(self);
        self.client.set(client);
    }
}

impl<'a, E: Entropy8<'a>> entropy::Client8 for Entropy8To32<'a, E> {
    fn entropy_available(
        &self,
        entropy: &mut dyn Iterator<Item = u8>,
        error: Result<(), ErrorCode>,
    ) -> entropy::Continue {
        self.client.map_or(entropy::Continue::Done, |client| {
            if error != Ok(()) {
                client.entropy_available(&mut Entropy8To32Iter(self), error)
            } else {
                let mut count = self.count.get();
                // Read in one byte at a time until we have 4;
                // return More if we need more, else return the value
                // of the upper randomness_available, as if it needs more
                // we'll need more from the underlying Rng8.
                while count < 4 {
                    let byte = entropy.next();
                    match byte {
                        None => {
                            return entropy::Continue::More;
                        }
                        Some(val) => {
                            let current = self.bytes.get();
                            let bits = val as u32;
                            let result = current | (bits << (8 * count));
                            count += 1;
                            self.count.set(count);
                            self.bytes.set(result)
                        }
                    }
                }
                let rval = client.entropy_available(&mut Entropy8To32Iter(self), Ok(()));
                self.bytes.set(0);
                rval
            }
        })
    }
}

struct Entropy8To32Iter<'a, 'b: 'a, E: Entropy8<'b>>(&'a Entropy8To32<'b, E>);

impl<'a, 'b: 'a, E: Entropy8<'b>> Iterator for Entropy8To32Iter<'a, 'b, E> {
    type Item = u32;

    fn next(&mut self) -> Option<u32> {
        let count = self.0.count.get();
        if count == 4 {
            self.0.count.set(0);
            Some(self.0.bytes.get())
        } else {
            None
        }
    }
}

pub struct Entropy32To8<'a, E: Entropy32<'a>> {
    egen: &'a E,
    client: OptionalCell<&'a dyn entropy::Client8>,
    entropy: Cell<u32>,
    bytes_consumed: Cell<usize>,
}

impl<'a, E: Entropy32<'a>> Entropy32To8<'a, E> {
    pub fn new(egen: &'a E) -> Self {
        Self {
            egen,
            client: OptionalCell::empty(),
            entropy: Cell::new(0),
            bytes_consumed: Cell::new(0),
        }
    }
}

impl<'a, E: Entropy32<'a>> Entropy8<'a> for Entropy32To8<'a, E> {
    fn get(&self) -> Result<(), ErrorCode> {
        self.egen.get()
    }

    /// Cancel acquisition of random numbers.
    ///
    /// There are two valid return values:
    ///   - Ok(()): an outstanding request from `get` has been cancelled,
    ///     or there was no outstanding request. No `randomness_available`
    ///     callback will be issued.
    ///   - FAIL: There will be a randomness_available callback, which
    ///     may or may not return an error code.
    fn cancel(&self) -> Result<(), ErrorCode> {
        self.egen.cancel()
    }

    fn set_client(&'a self, client: &'a dyn entropy::Client8) {
        self.egen.set_client(self);
        self.client.set(client);
    }
}

impl<'a, E: Entropy32<'a>> entropy::Client32 for Entropy32To8<'a, E> {
    fn entropy_available(
        &self,
        entropy: &mut dyn Iterator<Item = u32>,
        error: Result<(), ErrorCode>,
    ) -> entropy::Continue {
        self.client.map_or(entropy::Continue::Done, |client| {
            if error != Ok(()) {
                client.entropy_available(&mut Entropy32To8Iter::<E>(self), error)
            } else {
                let r = entropy.next();
                match r {
                    None => return entropy::Continue::More,
                    Some(val) => {
                        self.entropy.set(val);
                        self.bytes_consumed.set(0);
                    }
                }
                client.entropy_available(&mut Entropy32To8Iter(self), Ok(()))
            }
        })
    }
}

struct Entropy32To8Iter<'a, 'b: 'a, E: Entropy32<'b>>(&'a Entropy32To8<'b, E>);

impl<'a, 'b: 'a, E: Entropy32<'b>> Iterator for Entropy32To8Iter<'a, 'b, E> {
    type Item = u8;

    fn next(&mut self) -> Option<u8> {
        let bytes_consumed = self.0.bytes_consumed.get();
        if bytes_consumed < 4 {
            // Pull out a byte and right shift the u32 so its
            // least significant byte is fresh randomness.
            let entropy = self.0.entropy.get();
            let byte = (entropy & 0xff) as u8;
            self.0.entropy.set(entropy >> 8);
            self.0.bytes_consumed.set(bytes_consumed + 1);
            Some(byte)
        } else {
            None
        }
    }
}

pub struct SynchronousRandom<'a, R: Rng<'a>> {
    rgen: &'a R,
    seed: Cell<u32>,
}

#[allow(dead_code)]
impl<'a, R: Rng<'a>> SynchronousRandom<'a, R> {
    fn new(rgen: &'a R) -> Self {
        Self {
            rgen,
            seed: Cell::new(0),
        }
    }
}

impl<'a, R: Rng<'a>> Random<'a> for SynchronousRandom<'a, R> {
    fn initialize(&'a self) {
        self.rgen.set_client(self);
        let _ = self.rgen.get();
    }

    fn reseed(&self, seed: u32) {
        self.seed.set(seed);
    }

    // This implementation uses a linear congruential generator due to
    // its efficiency. The parameters for the generator are those
    // recommended in Numerical Recipes by Press, Teukolsky,
    // Vetterling, and Flannery.

    fn random(&self) -> u32 {
        const LCG_MULTIPLIER: u32 = 1_644_525;
        const LCG_INCREMENT: u32 = 1_013_904_223;
        let val = self.seed.get();
        let val = val.wrapping_mul(LCG_MULTIPLIER);
        let val = val.wrapping_add(LCG_INCREMENT);
        self.seed.set(val);
        val
    }
}

impl<'a, R: Rng<'a>> Client for SynchronousRandom<'a, R> {
    fn randomness_available(
        &self,
        randomness: &mut dyn Iterator<Item = u32>,
        _error: Result<(), ErrorCode>,
    ) -> Continue {
        match randomness.next() {
            None => Continue::More,
            Some(val) => {
                self.seed.set(val);
                Continue::Done
            }
        }
    }
}