1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! Register bitfield types and macros
//!
//! To conveniently access and manipulate fields of a register, this
//! library provides types and macros to describe and access bitfields
//! of a register. This can be especially useful in conjuction with
//! the APIs defined in [`interfaces`](crate::interfaces), which make
//! use of these types and hence allow to access and manipulate
//! bitfields of proper registers directly.
//!
//! A specific section (bitfield) in a register is described by the
//! [`Field`] type, consisting of an unshifted bitmask over the base
//! register [`UIntLike`] type, and a shift
//! parameter. It is further associated with a specific
//! [`RegisterLongName`], which can prevent its use with incompatible
//! registers.
//!
//! A value of a section of a register is described by the
//! [`FieldValue`] type. It stores the information of the respective
//! section in the register, as well as the associated value. A
//! [`FieldValue`] can be created from a [`Field`] through the
//! [`val`](Field::val) method.
//!
//! ## `register_bitfields` macro
//!
//! For defining register layouts with an associated
//! [`RegisterLongName`], along with
//! [`Field`]s and matching [`FieldValue`]s, a convenient macro-based
//! interface can be used.
//!
//! The following example demonstrates how two registers can be
//! defined, over a `u32` base type:
//!
//! ```rust
//! # use tock_registers::register_bitfields;
//! # use tock_registers::registers::InMemoryRegister;
//! # use tock_registers::interfaces::{Readable, ReadWriteable};
//! register_bitfields![u32,
//!     Uart [
//!         ENABLE OFFSET(0) NUMBITS(4) [
//!             ON = 8,
//!             OFF = 0
//!         ]
//!     ],
//!     Psel [
//!         PIN OFFSET(0) NUMBITS(6),
//!         CONNECT OFFSET(31) NUMBITS(1)
//!     ],
//! ];
//!
//! // In this scope, `Uart` is a module, representing the register and
//! // its fields. `Uart::Register` is a `RegisterLongName` type
//! // identifying this register. `Uart::ENABLE` is a field covering the
//! // first 4 bits of this register. `Uart::ENABLE::ON` is a
//! // `FieldValue` over that field, with the associated value 8.
//! // We can now use the types like so:
//! let reg: InMemoryRegister<u32, Uart::Register> = InMemoryRegister::new(0);
//! assert!(reg.read(Uart::ENABLE) == 0x00000000);
//! reg.modify(Uart::ENABLE::ON);
//! assert!(reg.get() == 0x00000008);
//!
//! use tock_registers::interfaces::Debuggable;
//! assert!(
//!     &format!("{:?}", reg.debug())
//!     == "Uart { ENABLE: ON }"
//! );
//! ```

// The register interface uses `+` in a way that is fine for bitfields, but
// looks unusual (and perhaps problematic) to a linter. We just ignore those
// lints for this file.
#![allow(clippy::suspicious_op_assign_impl)]
#![allow(clippy::suspicious_arithmetic_impl)]

use core::marker::PhantomData;
use core::ops::{Add, AddAssign};

use crate::{RegisterLongName, UIntLike};

/// Specific section of a register.
///
/// For the Field, the mask is unshifted, ie. the LSB should always be set.
pub struct Field<T: UIntLike, R: RegisterLongName> {
    pub mask: T,
    pub shift: usize,
    associated_register: PhantomData<R>,
}

impl<T: UIntLike, R: RegisterLongName> Field<T, R> {
    pub const fn new(mask: T, shift: usize) -> Field<T, R> {
        Field {
            mask,
            shift,
            associated_register: PhantomData,
        }
    }

    #[inline]
    pub fn read(self, val: T) -> T {
        (val & (self.mask << self.shift)) >> self.shift
    }

    #[inline]
    /// Check if one or more bits in a field are set
    pub fn is_set(self, val: T) -> bool {
        val & (self.mask << self.shift) != T::zero()
    }

    #[inline]
    /// Read value of the field as an enum member
    ///
    /// This method expects to be passed the unasked and unshifted register
    /// value, extracts the field value by calling [`Field::read`] and
    /// subsequently passes that value to the [`TryFromValue`] implementation on
    /// the passed enum type.
    ///
    /// The [`register_bitfields!`](crate::register_bitfields) macro will
    /// generate an enum containing the various named field variants and
    /// implementing the required [`TryFromValue`] trait. It is accessible as
    /// `$REGISTER_NAME::$FIELD_NAME::Value`.
    ///
    /// This method can be useful to symbolically represent read register field
    /// states throughout the codebase and to enforce exhaustive matches over
    /// all defined valid register field values.
    ///
    /// ## Usage Example
    ///
    /// ```rust
    /// # use tock_registers::interfaces::Readable;
    /// # use tock_registers::registers::InMemoryRegister;
    /// # use tock_registers::register_bitfields;
    /// register_bitfields![u8,
    ///     EXAMPLEREG [
    ///         TESTFIELD OFFSET(3) NUMBITS(3) [
    ///             Foo = 2,
    ///             Bar = 3,
    ///             Baz = 6,
    ///         ],
    ///     ],
    /// ];
    ///
    /// assert_eq!(
    ///     EXAMPLEREG::TESTFIELD.read_as_enum::<EXAMPLEREG::TESTFIELD::Value>(0x9C).unwrap(),
    ///     EXAMPLEREG::TESTFIELD::Value::Bar
    /// );
    /// ```
    pub fn read_as_enum<E: TryFromValue<T, EnumType = E>>(self, val: T) -> Option<E> {
        E::try_from_value(self.read(val))
    }
}

// #[derive(Copy, Clone)] won't work here because it will use
// incorrect bounds, as a result of using a PhantomData over the
// generic R. The PhantomData<R> implements Copy regardless of whether
// R does, but the #[derive(Copy, Clone)] generates
//
//    #[automatically_derived]
//    #[allow(unused_qualifications)]
//    impl<T: ::core::marker::Copy + UIntLike,
//         R: ::core::marker::Copy + RegisterLongName>
//            ::core::marker::Copy for Field<T, R> {}
//
// , so Field will only implement Copy if R: Copy.
//
// Manually implementing Clone and Copy works around this issue.
//
// Relevant Rust issue: https://github.com/rust-lang/rust/issues/26925
impl<T: UIntLike, R: RegisterLongName> Clone for Field<T, R> {
    fn clone(&self) -> Self {
        *self
    }
}
impl<T: UIntLike, R: RegisterLongName> Copy for Field<T, R> {}

macro_rules! Field_impl_for {
    ($type:ty) => {
        impl<R: RegisterLongName> Field<$type, R> {
            pub const fn val(&self, value: $type) -> FieldValue<$type, R> {
                FieldValue::<$type, R>::new(self.mask, self.shift, value)
            }
        }
    };
}

Field_impl_for!(u8);
Field_impl_for!(u16);
Field_impl_for!(u32);
Field_impl_for!(u64);
Field_impl_for!(u128);
Field_impl_for!(usize);

/// Values for the specific register fields.
///
/// For the FieldValue, the masks and values are shifted into their actual
/// location in the register.
#[derive(Copy, Clone)]
pub struct FieldValue<T: UIntLike, R: RegisterLongName> {
    mask: T,
    pub value: T,
    associated_register: PhantomData<R>,
}

macro_rules! FieldValue_impl_for {
    ($type:ty) => {
        // Necessary to split the implementation of new() out because the bitwise
        // math isn't treated as const when the type is generic.
        // Tracking issue: https://github.com/rust-lang/rfcs/pull/2632
        impl<R: RegisterLongName> FieldValue<$type, R> {
            pub const fn new(mask: $type, shift: usize, value: $type) -> Self {
                FieldValue {
                    mask: mask << shift,
                    value: (value & mask) << shift,
                    associated_register: PhantomData,
                }
            }
        }

        // Necessary to split the implementation of From<> out because of the orphan rule
        // for foreign trait implementation (see [E0210](https://doc.rust-lang.org/error-index.html#E0210)).
        impl<R: RegisterLongName> From<FieldValue<$type, R>> for $type {
            fn from(val: FieldValue<$type, R>) -> $type {
                val.value
            }
        }
    };
}

FieldValue_impl_for!(u8);
FieldValue_impl_for!(u16);
FieldValue_impl_for!(u32);
FieldValue_impl_for!(u64);
FieldValue_impl_for!(u128);
FieldValue_impl_for!(usize);

impl<T: UIntLike, R: RegisterLongName> FieldValue<T, R> {
    #[inline]
    pub fn none() -> Self {
        Self {
            mask: T::zero(),
            value: T::zero(),
            associated_register: PhantomData,
        }
    }

    /// Get the raw bitmask represented by this FieldValue.
    #[inline]
    pub const fn mask(&self) -> T {
        self.mask as T
    }

    #[inline]
    pub fn read(&self, field: Field<T, R>) -> T {
        field.read(self.value)
    }

    /// Modify fields in a register value
    #[inline]
    pub fn modify(self, val: T) -> T {
        (val & !self.mask) | self.value
    }

    /// Check if any of the bits covered by the mask for this
    /// `FieldValue` and set in the `FieldValue` are also set
    /// in the passed value
    #[inline]
    pub fn any_matching_bits_set(&self, val: T) -> bool {
        val & self.mask & self.value != T::zero()
    }

    /// Check if all specified parts of a field match
    #[inline]
    pub fn matches_all(&self, val: T) -> bool {
        val & self.mask == self.value
    }
}

// Combine two fields with the addition operator
impl<T: UIntLike, R: RegisterLongName> Add for FieldValue<T, R> {
    type Output = Self;

    #[inline]
    fn add(self, rhs: Self) -> Self {
        FieldValue {
            mask: self.mask | rhs.mask,
            value: self.value | rhs.value,
            associated_register: PhantomData,
        }
    }
}

// Combine two fields with the += operator
impl<T: UIntLike, R: RegisterLongName> AddAssign for FieldValue<T, R> {
    #[inline]
    fn add_assign(&mut self, rhs: FieldValue<T, R>) {
        self.mask |= rhs.mask;
        self.value |= rhs.value;
    }
}

/// Conversion of raw register value into enumerated values member.
/// Implemented inside register_bitfields! macro for each bit field.
pub trait TryFromValue<V> {
    type EnumType;

    fn try_from_value(v: V) -> Option<Self::EnumType>;
}

/// Helper macro for computing bitmask of variable number of bits
#[macro_export]
macro_rules! bitmask {
    ($numbits:expr) => {
        (1 << ($numbits - 1)) + ((1 << ($numbits - 1)) - 1)
    };
}

/// Helper macro for defining register fields.
#[macro_export]
macro_rules! register_bitmasks {
    {
        // BITFIELD_NAME OFFSET(x)
        $(#[$outer:meta])*
        $valtype:ident, $reg_mod:ident, $reg_desc:ident, [
            $( $(#[$inner:meta])* $field:ident OFFSET($offset:expr)),+ $(,)?
        ]
    } => {
        $(#[$outer])*
        $( $crate::register_bitmasks!($valtype, $reg_desc, $(#[$inner])* $field, $offset, 1, []); )*
        $crate::register_bitmasks!(@debug $valtype, $reg_mod, $reg_desc, [$($field),*]);
    };

    {
        // BITFIELD_NAME OFFSET
        // All fields are 1 bit
        $(#[$outer:meta])*
        $valtype:ident, $reg_mod:ident, $reg_desc:ident, [
            $( $(#[$inner:meta])* $field:ident $offset:expr ),+ $(,)?
        ]
    } => {
        $(#[$outer])*
        $( $crate::register_bitmasks!($valtype, $reg_desc, $(#[$inner])* $field, $offset, 1, []); )*
        $crate::register_bitmasks!(@debug $valtype, $reg_mod, $reg_desc, [$($field),*]);
    };

    {
        // BITFIELD_NAME OFFSET(x) NUMBITS(y)
        $(#[$outer:meta])*
        $valtype:ident, $reg_mod:ident, $reg_desc:ident, [
            $( $(#[$inner:meta])* $field:ident OFFSET($offset:expr) NUMBITS($numbits:expr) ),+ $(,)?
        ]
    } => {
        $(#[$outer])*
        $( $crate::register_bitmasks!($valtype, $reg_desc, $(#[$inner])* $field, $offset, $numbits, []); )*
        $crate::register_bitmasks!(@debug $valtype, $reg_mod, $reg_desc, [$($field),*]);
    };

    {
        // BITFIELD_NAME OFFSET(x) NUMBITS(y) []
        $(#[$outer:meta])*
        $valtype:ident, $reg_mod:ident, $reg_desc:ident, [
            $( $(#[$inner:meta])* $field:ident OFFSET($offset:expr) NUMBITS($numbits:expr)
               $values:tt ),+ $(,)?
        ]
    } => {
        $(#[$outer])*
        $( $crate::register_bitmasks!($valtype, $reg_desc, $(#[$inner])* $field, $offset, $numbits,
                              $values); )*
        $crate::register_bitmasks!(@debug $valtype, $reg_mod, $reg_desc, [$($field),*]);
    };

    {
        $valtype:ident, $reg_desc:ident, $(#[$outer:meta])* $field:ident,
                    $offset:expr, $numbits:expr,
                    [$( $(#[$inner:meta])* $valname:ident = $value:expr ),+ $(,)?]
    } => { // this match arm is duplicated below with an allowance for 0 elements in the valname -> value array,
        // to seperately support the case of zero-variant enums not supporting non-default
        // representations.
        #[allow(non_upper_case_globals)]
        #[allow(unused)]
        pub const $field: Field<$valtype, $reg_desc> =
            Field::<$valtype, $reg_desc>::new($crate::bitmask!($numbits), $offset);

        #[allow(non_snake_case)]
        #[allow(unused)]
        $(#[$outer])*
        pub mod $field {
            #[allow(unused_imports)]
            use $crate::fields::{TryFromValue, FieldValue};
            use super::$reg_desc;

            $(
            #[allow(non_upper_case_globals)]
            #[allow(unused)]
            $(#[$inner])*
            pub const $valname: FieldValue<$valtype, $reg_desc> =
                FieldValue::<$valtype, $reg_desc>::new($crate::bitmask!($numbits),
                    $offset, $value);
            )*

            #[allow(non_upper_case_globals)]
            #[allow(unused)]
            pub const SET: FieldValue<$valtype, $reg_desc> =
                FieldValue::<$valtype, $reg_desc>::new($crate::bitmask!($numbits),
                    $offset, $crate::bitmask!($numbits));

            #[allow(non_upper_case_globals)]
            #[allow(unused)]
            pub const CLEAR: FieldValue<$valtype, $reg_desc> =
                FieldValue::<$valtype, $reg_desc>::new($crate::bitmask!($numbits),
                    $offset, 0);

            #[allow(dead_code)]
            #[allow(non_camel_case_types)]
            #[derive(Copy, Clone, Debug, Eq, PartialEq)]
            #[repr($valtype)] // so that values larger than isize::MAX can be stored
            $(#[$outer])*
            pub enum Value {
                $(
                    $(#[$inner])*
                    $valname = $value,
                )*
            }

            impl TryFromValue<$valtype> for Value {
                type EnumType = Value;

                fn try_from_value(v: $valtype) -> Option<Self::EnumType> {
                    match v {
                        $(
                            $(#[$inner])*
                            x if x == Value::$valname as $valtype => Some(Value::$valname),
                        )*

                        _ => Option::None
                    }
                }
            }

            impl From<Value> for FieldValue<$valtype, $reg_desc> {
                fn from(v: Value) -> Self {
                    Self::new($crate::bitmask!($numbits), $offset, v as $valtype)
                }
            }
        }
    };
    {
        $valtype:ident, $reg_desc:ident, $(#[$outer:meta])* $field:ident,
                    $offset:expr, $numbits:expr,
                    []
    } => { //same pattern as previous match arm, for 0 elements in array. Removes code associated with array.
        #[allow(non_upper_case_globals)]
        #[allow(unused)]
        pub const $field: Field<$valtype, $reg_desc> =
            Field::<$valtype, $reg_desc>::new($crate::bitmask!($numbits), $offset);

        #[allow(non_snake_case)]
        #[allow(unused)]
        $(#[$outer])*
        pub mod $field {
            #[allow(unused_imports)]
            use $crate::fields::{FieldValue, TryFromValue};
            use super::$reg_desc;

            #[allow(non_upper_case_globals)]
            #[allow(unused)]
            pub const SET: FieldValue<$valtype, $reg_desc> =
                FieldValue::<$valtype, $reg_desc>::new($crate::bitmask!($numbits),
                    $offset, $crate::bitmask!($numbits));

            #[allow(non_upper_case_globals)]
            #[allow(unused)]
            pub const CLEAR: FieldValue<$valtype, $reg_desc> =
                FieldValue::<$valtype, $reg_desc>::new($crate::bitmask!($numbits),
                    $offset, 0);

            #[allow(dead_code)]
            #[allow(non_camel_case_types)]
            #[derive(Debug)]
            $(#[$outer])*
            pub enum Value {}

            impl TryFromValue<$valtype> for Value {
                type EnumType = Value;

                fn try_from_value(_v: $valtype) -> Option<Self::EnumType> {
                    Option::None
                }
            }
        }
    };

    // Implement the `RegisterDebugInfo` trait for the register. Refer to its
    // documentation for more information on the individual types and fields.
    (
        // final implementation of the macro
        @debug $valtype:ident, $reg_mod:ident, $reg_desc:ident, [$($field:ident),*]
    ) => {
        impl $crate::debug::RegisterDebugInfo<$valtype> for $reg_desc {
            // Sequence of field value enum types (implementing `TryFromValue`,
            // produced above), generated by recursing over the fields:
            type FieldValueEnumTypes = $crate::register_bitmasks!(
                @fv_enum_type_seq $valtype, $($field::Value),*
            );

            fn name() -> &'static str {
                stringify!($reg_mod)
            }

            fn field_names() -> &'static [&'static str] {
                &[
                    $(
                        stringify!($field)
                    ),*
                ]
            }

            fn fields() -> &'static [Field<$valtype, Self>] {
                &[
                    $(
                        $field
                    ),*
                ]
            }
        }
    };

    // Build the recursive `FieldValueEnumSeq` type sequence. This will generate
    // a type signature of the form:
    //
    // ```
    // FieldValueEnumCons<u32, Foo,
    //     FieldValueEnumCons<u32, Bar,
    //         FieldValueEnumCons<u32, Baz,
    //             FieldValueEnumNil
    //         >
    //     >
    // >
    // ```
    (
        @fv_enum_type_seq $valtype:ident, $enum_val:path $(, $($rest:path),+)?
    ) => {
        $crate::debug::FieldValueEnumCons<
            $valtype,
            $enum_val,
            $crate::register_bitmasks!(@fv_enum_type_seq $valtype $(, $($rest),*)*)
        >
    };
    (
        @fv_enum_type_seq $valtype:ident $(,)?
    ) => {
        $crate::debug::FieldValueEnumNil
    };
}

/// Define register types and fields.
///
/// Implementations of memory-mapped registers can use this macro to define the
/// structure and bitwise meaning of individual registers in the peripheral. An
/// example use for a hypothetical UART driver might look like:
///
/// ```rust,ignore
/// register_bitfields![u32,
///     CONTROL [
///         ENABLE OFFSET(0) NUMBITS(1),
///         STOP_BITS OFFSET(1) NUMBITS(2) [
///             StopBits1 = 0,
///             StopBits2 = 1,
///             StopBits0 = 2
///         ]
///     ],
///     BYTE [
///         CHARACTER OFFSET(0) NUMBITS(8)
///     ],
///     INTERRUPT [
///         TRANSMITTED OFFSET(0) NUMBITS(1),
///         RECEIVED OFFSET(1) NUMBITS(1),
///         FIFO_FULL OFFSET(2) NUMBITS(1)
///     ]
/// ];
/// ```
///
/// Each field in the register can be identified by its offset within the
/// register and its bitwidth. Fields that have discrete options with semantic
/// meaning can be enumerated.
#[macro_export]
macro_rules! register_bitfields {
    {
        $valtype:ident, $( $(#[$inner:meta])* $vis:vis $reg:ident $fields:tt ),* $(,)?
    } => {
        $(
            #[allow(non_snake_case)]
            $(#[$inner])*
            $vis mod $reg {
                // Visibility note: This is left always `pub` as it is not
                // meaningful to restrict access to the `Register` element of
                // the register module if the module itself is in scope
                //
                // (if you can access $reg, you can access $reg::Register)
                #[derive(Clone, Copy)]
                pub struct Register;
                impl $crate::RegisterLongName for Register {}

                use $crate::fields::Field;

                $crate::register_bitmasks!( $valtype, $reg, Register, $fields );
            }
        )*
    }
}

#[cfg(test)]
mod tests {
    #[derive(Debug, PartialEq, Eq)]
    enum Foo {
        Foo0,
        Foo1,
        Foo2,
        Foo3,
        Foo4,
        Foo5,
        Foo6,
        Foo7,
    }

    impl crate::fields::TryFromValue<u16> for Foo {
        type EnumType = Foo;

        fn try_from_value(v: u16) -> Option<Self::EnumType> {
            Self::try_from_value(v as u32)
        }
    }
    impl crate::fields::TryFromValue<u32> for Foo {
        type EnumType = Foo;

        fn try_from_value(v: u32) -> Option<Self::EnumType> {
            match v {
                0 => Some(Foo::Foo0),
                1 => Some(Foo::Foo1),
                2 => Some(Foo::Foo2),
                3 => Some(Foo::Foo3),
                4 => Some(Foo::Foo4),
                5 => Some(Foo::Foo5),
                6 => Some(Foo::Foo6),
                7 => Some(Foo::Foo7),
                _ => None,
            }
        }
    }

    mod field {
        use super::Foo;
        use crate::fields::{Field, TryFromValue};

        #[test]
        fn test_new() {
            let field8 = Field::<u8, ()>::new(0x12, 3);
            assert_eq!(field8.mask, 0x12_u8);
            assert_eq!(field8.shift, 3);
            let field16 = Field::<u16, ()>::new(0x1234, 5);
            assert_eq!(field16.mask, 0x1234_u16);
            assert_eq!(field16.shift, 5);
            let field32 = Field::<u32, ()>::new(0x12345678, 9);
            assert_eq!(field32.mask, 0x12345678_u32);
            assert_eq!(field32.shift, 9);
            let field64 = Field::<u64, ()>::new(0x12345678_9abcdef0, 1);
            assert_eq!(field64.mask, 0x12345678_9abcdef0_u64);
            assert_eq!(field64.shift, 1);
            let field128 = Field::<u128, ()>::new(0x12345678_9abcdef0_0fedcba9_87654321, 1);
            assert_eq!(field128.mask, 0x12345678_9abcdef0_0fedcba9_87654321_u128);
            assert_eq!(field128.shift, 1);
        }

        #[test]
        fn test_read() {
            let field = Field::<u32, ()>::new(0xFF, 4);
            assert_eq!(field.read(0x123), 0x12);
            let field = Field::<u32, ()>::new(0xF0F, 4);
            assert_eq!(field.read(0x1234), 0x103);
        }

        #[test]
        fn test_is_set() {
            let field = Field::<u16, ()>::new(0xFF, 4);
            assert_eq!(field.is_set(0), false);
            assert_eq!(field.is_set(0xFFFF), true);
            assert_eq!(field.is_set(0x0FF0), true);
            assert_eq!(field.is_set(0x1000), false);
            assert_eq!(field.is_set(0x0100), true);
            assert_eq!(field.is_set(0x0010), true);
            assert_eq!(field.is_set(0x0001), false);

            for shift in 0..24 {
                let field = Field::<u32, ()>::new(0xFF, shift);
                for x in 1..=0xFF {
                    assert_eq!(field.is_set(x << shift), true);
                }
                assert_eq!(field.is_set(!(0xFF << shift)), false);
            }
        }

        #[test]
        fn test_read_as_enum() {
            let field = Field::<u16, ()>::new(0x7, 4);
            assert_eq!(field.read_as_enum(0x1234), Some(Foo::Foo3));
            assert_eq!(field.read_as_enum(0x5678), Some(Foo::Foo7));
            assert_eq!(field.read_as_enum(0xFFFF), Some(Foo::Foo7));
            assert_eq!(field.read_as_enum(0x0000), Some(Foo::Foo0));
            assert_eq!(field.read_as_enum(0x0010), Some(Foo::Foo1));
            assert_eq!(field.read_as_enum(0x1204), Some(Foo::Foo0));

            for shift in 0..29 {
                let field = Field::<u32, ()>::new(0x7, shift);
                for x in 0..8 {
                    assert_eq!(field.read_as_enum(x << shift), Foo::try_from_value(x));
                }
            }
        }
    }

    mod field_value {
        use crate::fields::Field;

        #[test]
        fn test_from() {
            let field = Field::<u32, ()>::new(0xFF, 4);
            assert_eq!(u32::from(field.val(0)), 0);
            assert_eq!(u32::from(field.val(0xFFFFFFFF)), 0xFF0);
            assert_eq!(u32::from(field.val(0x12)), 0x120);
            assert_eq!(u32::from(field.val(0x123)), 0x230);

            for shift in 0..32 {
                let field = Field::<u32, ()>::new(0xFF, shift);
                for x in 0..=0xFF {
                    assert_eq!(u32::from(field.val(x)), x << shift);
                }
            }
        }

        #[test]
        fn test_read_same_field() {
            let field = Field::<u32, ()>::new(0xFF, 4);
            assert_eq!(field.val(0).read(field), 0);
            assert_eq!(field.val(0xFFFFFFFF).read(field), 0xFF);
            assert_eq!(field.val(0x12).read(field), 0x12);
            assert_eq!(field.val(0x123).read(field), 0x23);

            for shift in 0..24 {
                let field = Field::<u32, ()>::new(0xFF, shift);
                for x in 0..=0xFF {
                    assert_eq!(field.val(x).read(field), x);
                }
            }
        }

        #[test]
        fn test_read_disjoint_fields() {
            for shift in 0..24 {
                let field1 = Field::<u32, ()>::new(0xF0, shift);
                let field2 = Field::<u32, ()>::new(0x0F, shift);
                for x in 0..=0xFF {
                    assert_eq!(field1.val(x).read(field2), 0);
                    assert_eq!(field2.val(x).read(field1), 0);
                }
            }
            for shift in 0..24 {
                let field1 = Field::<u32, ()>::new(0xF, shift);
                let field2 = Field::<u32, ()>::new(0xF, shift + 4);
                for x in 0..=0xFF {
                    assert_eq!(field1.val(x).read(field2), 0);
                    assert_eq!(field2.val(x).read(field1), 0);
                }
            }
        }

        #[test]
        fn test_modify() {
            let field = Field::<u32, ()>::new(0xFF, 4);
            assert_eq!(field.val(0x23).modify(0x0000), 0x0230);
            assert_eq!(field.val(0x23).modify(0xFFFF), 0xF23F);
            assert_eq!(field.val(0x23).modify(0x1234), 0x1234);
            assert_eq!(field.val(0x23).modify(0x5678), 0x5238);
        }

        #[test]
        fn test_any_matching_bits_set() {
            let field = Field::<u32, ()>::new(0xFF, 4);
            assert_eq!(field.val(0x23).any_matching_bits_set(0x1234), true);
            assert_eq!(field.val(0x23).any_matching_bits_set(0x5678), true);
            assert_eq!(field.val(0x23).any_matching_bits_set(0x5008), false);

            for shift in 0..24 {
                let field = Field::<u32, ()>::new(0xFF, shift);
                let field_value = field.val(0xff);
                for y in 1..=0xff {
                    assert_eq!(field_value.any_matching_bits_set(y << shift), true,);
                }
                assert_eq!(field_value.any_matching_bits_set(0), false);
                assert_eq!(field_value.any_matching_bits_set(!(0xFF << shift)), false);
            }
        }

        #[test]
        fn test_matches_all() {
            let field = Field::<u32, ()>::new(0xFF, 4);
            assert_eq!(field.val(0x23).matches_all(0x1234), true);
            assert_eq!(field.val(0x23).matches_all(0x5678), false);

            for shift in 0..24 {
                let field = Field::<u32, ()>::new(0xFF, shift);
                for x in 0..=0xFF {
                    assert_eq!(field.val(x).matches_all(x << shift), true);
                    assert_eq!(field.val(x + 1).matches_all(x << shift), false);
                }
            }
        }

        #[test]
        fn test_matches_any() {
            register_bitfields! {
                u32,

                TEST [
                    FLAG OFFSET(18) NUMBITS(1) [],
                    SIZE OFFSET(0) NUMBITS(2) [
                        Byte = 0,
                        Halfword = 1,
                        Word = 2
                    ],
                ]
            }

            let value: crate::LocalRegisterCopy<u32, TEST::Register> =
                crate::LocalRegisterCopy::new(2);
            assert!(value.matches_any(&[TEST::SIZE::Word]));
            assert!(!value.matches_any(&[TEST::SIZE::Halfword]));
            assert!(!value.matches_any(&[TEST::SIZE::Byte]));
            assert!(value.matches_any(&[TEST::SIZE::Word, TEST::FLAG::SET]));
            assert!(value.matches_any(&[TEST::SIZE::Halfword, TEST::FLAG::CLEAR]));
            assert!(!value.matches_any(&[TEST::SIZE::Halfword, TEST::FLAG::SET]));
            let value: crate::LocalRegisterCopy<u32, TEST::Register> =
                crate::LocalRegisterCopy::new(266241);
            assert!(value.matches_any(&[TEST::FLAG::SET]));
            assert!(!value.matches_any(&[TEST::FLAG::CLEAR]));
        }

        #[test]
        fn test_add_disjoint_fields() {
            let field1 = Field::<u32, ()>::new(0xFF, 24);
            let field2 = Field::<u32, ()>::new(0xFF, 16);
            let field3 = Field::<u32, ()>::new(0xFF, 8);
            let field4 = Field::<u32, ()>::new(0xFF, 0);
            assert_eq!(
                u32::from(
                    field1.val(0x12) + field2.val(0x34) + field3.val(0x56) + field4.val(0x78)
                ),
                0x12345678
            );

            for shift in 0..24 {
                let field1 = Field::<u32, ()>::new(0xF, shift);
                let field2 = Field::<u32, ()>::new(0xF, shift + 4);
                for x in 0..=0xF {
                    for y in 0..=0xF {
                        assert_eq!(
                            u32::from(field1.val(x) + field2.val(y)),
                            (x | (y << 4)) << shift
                        );
                    }
                }
            }
        }

        #[test]
        fn test_add_assign_disjoint_fields() {
            let field1 = Field::<u32, ()>::new(0xFF, 24);
            let field2 = Field::<u32, ()>::new(0xFF, 16);
            let field3 = Field::<u32, ()>::new(0xFF, 8);
            let field4 = Field::<u32, ()>::new(0xFF, 0);

            let mut value = field1.val(0x12);
            value += field2.val(0x34);
            value += field3.val(0x56);
            value += field4.val(0x78);
            assert_eq!(u32::from(value), 0x12345678);

            for shift in 0..24 {
                let field1 = Field::<u32, ()>::new(0xF, shift);
                let field2 = Field::<u32, ()>::new(0xF, shift + 4);
                for x in 0..=0xF {
                    for y in 0..=0xF {
                        let mut value = field1.val(x);
                        value += field2.val(y);
                        assert_eq!(u32::from(value), (x | (y << 4)) << shift);
                    }
                }
            }
        }
    }

    // TODO: More unit tests here.
}