1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright OxidOS Automotive SRL.
//
// Author: Ioan-Cristian CÎRSTEA <ioan.cirstea@oxidos.io>
//! Main phase-locked loop (PLL) clock driver for the STM32F4xx family. [^doc_ref]
//!
//! Many boards of the STM32F4xx family provide several PLL clocks. However, all of them have a
//! main PLL clock. This driver is designed for the main PLL clock. It will be simply referred as
//! the PLL clock.
//!
//! The PLL clock is composed of two outputs:
//!
//! + the main one used for the system clock
//! + the PLL48CLK used for USB OTG FS, the random number generator and SDIO clocks
//!
//! # Implemented features
//!
//! - [x] Default configuration of 96MHz with reduced PLL jitter
//! - [x] 1MHz frequency precision
//! - [x] Support for 13-216MHz frequency range
//! - [x] Support for PLL48CLK output
//!
//! # Missing features
//!
//! - [ ] Precision higher than 1MHz
//! - [ ] Source selection
//! - [ ] Precise control over the PLL48CLK frequency
//!
//! # Usage
//!
//! For the purposes of brevity, any error checking has been removed. In real applications, always
//! check the return values of the [Pll] methods.
//!
//! First, get a reference to the [Pll] struct:
//! ```rust,ignore
//! let pll = &peripherals.stm32f4.clocks.pll;
//! ```
//!
//! ## Start the clock with a given frequency
//!
//! ```rust,ignore
//! pll.set_frequency_mhz(PllSource::HSI, HSI_FREQUENCY_MHZ, 100); // 100MHz
//! pll.enable();
//! ```
//!
//! ## Stop the clock
//!
//! ```rust,ignore
//! pll.disable();
//! ```
//!
//! ## Check whether the PLL clock is running or not
//! ```rust,ignore
//! if pll.is_enabled() {
//! // do something...
//! } else {
//! // do something...
//! }
//! ```
//!
//! ## Check the clock frequency
//!
//! ```rust,ignore
//! let optional_pll_frequency = pll.get_frequency_mhz();
//! if let None = optional_pll_frequency {
//! /* Clock stopped */
//! }
//! let pll_frequency = optional_pll_frequency.unwrap();
//! /* Computations based on the PLL frequency */
//! ```
//!
//! ## Reconfigure the clock once started
//!
//! ```rust,ignore
//! pll.disable(); // The PLL clock can't be configured while running
//! pll.set_frequency_mhz(PllSource::HSI, HSI_FREQUENCY_MHZ, 50); // 50MHz
//! pll.enable();
//! ```
//!
//! ## Configure the PLL clock so that PLL48CLK output is correctly calibrated
//! ```rust,ignore
//! // The frequency of the PLL clock must be 1, 1.5, 2, 2.5, 3, 3.5 or 4 x 48MHz in order to get
//! // 48MHz output. Otherwise, the driver will attempt to get the closest frequency lower than 48MHz
//! pll.set_frequency_mhz(PllSource::HSI, HSI_FREQUENCY_MHZ, 72); // 72MHz = 48MHz * 1.5
//! pll.enable();
//! ```
//!
//! ## Check if the PLL48CLK output is calibrated.
//! ```rust,ignore
//! if !pll.is_pll48_calibrated() {
//! /* Handle the case when it is not calibrated */
//! }
//! ```
//!
//! ## Get the frequency of the PLL48CLK output
//!
//! ```rust,ignore
//! let optional_pll48_frequency = pll.get_frequency_mhz();
//! if let None = optional_pll48_frequency {
//! /* Clock stopped */
//! }
//! let pll48_frequency = optional_pll48_frequency.unwrap();
//! ```
//!
//! [^doc_ref]: See 6.2.3 in the documentation.
use crate::chip_specific::clock_constants;
use crate::clocks::hsi::HSI_FREQUENCY_MHZ;
use crate::rcc::Rcc;
use crate::rcc::SysClockSource;
use crate::rcc::{PllSource, PLLM, PLLP, PLLQ};
use crate::rcc::{DEFAULT_PLLM_VALUE, DEFAULT_PLLN_VALUE, DEFAULT_PLLP_VALUE, DEFAULT_PLLQ_VALUE};
use kernel::debug;
use kernel::utilities::cells::OptionalCell;
use kernel::ErrorCode;
use core::cell::Cell;
use core::marker::PhantomData;
/// Main PLL clock structure.
pub struct Pll<'a, PllConstants> {
rcc: &'a Rcc,
frequency_mhz: OptionalCell<usize>,
pll48_frequency_mhz: OptionalCell<usize>,
pll48_calibrated: Cell<bool>,
_marker: PhantomData<PllConstants>,
}
impl<'a, PllConstants: clock_constants::PllConstants> Pll<'a, PllConstants> {
// Create a new instance of the PLL clock.
//
// The instance of the PLL clock is configured to run at 96MHz and with minimal PLL jitter
// effects.
//
// # Parameters
//
// + rcc: an instance of [crate::rcc]
//
// # Returns
//
// An instance of the PLL clock.
pub(in crate::clocks) fn new(rcc: &'a Rcc) -> Self {
const PLLP: usize = match DEFAULT_PLLP_VALUE {
PLLP::DivideBy2 => 2,
PLLP::DivideBy4 => 4,
PLLP::DivideBy6 => 6,
PLLP::DivideBy8 => 8,
};
const PLLM: usize = DEFAULT_PLLM_VALUE as usize;
const PLLQ: usize = DEFAULT_PLLQ_VALUE as usize;
Self {
rcc,
frequency_mhz: OptionalCell::new(HSI_FREQUENCY_MHZ / PLLM * DEFAULT_PLLN_VALUE / PLLP),
pll48_frequency_mhz: OptionalCell::new(
HSI_FREQUENCY_MHZ / PLLM * DEFAULT_PLLN_VALUE / PLLQ,
),
pll48_calibrated: Cell::new(true),
_marker: PhantomData,
}
}
// The caller must ensure the desired frequency lies between MIN_FREQ_MHZ and
// MAX_FREQ_MHZ. Otherwise, the return value makes no sense.
fn compute_pllp(desired_frequency_mhz: usize) -> PLLP {
if desired_frequency_mhz < 55 {
PLLP::DivideBy8
} else if desired_frequency_mhz < 73 {
PLLP::DivideBy6
} else if desired_frequency_mhz < 109 {
PLLP::DivideBy4
} else {
PLLP::DivideBy2
}
}
// The caller must ensure the desired frequency lies between MIN_FREQ_MHZ and
// MAX_FREQ_MHZ. Otherwise, the return value makes no sense.
fn compute_plln(
desired_frequency_mhz: usize,
pll_source_clock_freq: usize,
pllp: PLLP,
) -> usize {
let vco_input_frequency: usize = pll_source_clock_freq / DEFAULT_PLLM_VALUE as usize;
desired_frequency_mhz * Into::<usize>::into(pllp) / vco_input_frequency
}
// The caller must ensure the VCO output frequency lies between 100 and 432MHz. Otherwise, the
// return value makes no sense.
fn compute_pllq(vco_output_frequency_mhz: usize) -> PLLQ {
for pllq in 3..10 {
if 48 * pllq >= vco_output_frequency_mhz {
return match pllq {
3 => PLLQ::DivideBy3,
4 => PLLQ::DivideBy4,
5 => PLLQ::DivideBy5,
6 => PLLQ::DivideBy6,
7 => PLLQ::DivideBy7,
8 => PLLQ::DivideBy8,
_ => PLLQ::DivideBy9,
};
}
}
unreachable!("The previous for loop should always return");
}
/// Set the PLL source clock
fn set_pll_source_clock(&self, source: PllSource) -> Result<(), ErrorCode> {
if self.is_enabled() {
Err(ErrorCode::FAIL)
} else {
self.rcc.set_pll_clocks_source(source);
Ok(())
}
}
/// Start the PLL clock.
///
/// # Errors
///
/// + [Err]\([ErrorCode::BUSY]\): if enabling the PLL clock took too long. Recall this method to
/// ensure the PLL clock is running.
pub fn enable(&self) -> Result<(), ErrorCode> {
// Enable the PLL clock
self.rcc.enable_pll_clock();
// Wait until the PLL clock is locked.
// 200 was obtained by running tests in release mode
for _ in 0..200 {
if self.rcc.is_locked_pll_clock() {
return Ok(());
}
}
// If waiting for the PLL clock took too long, return ErrorCode::BUSY
Err(ErrorCode::BUSY)
}
/// Stop the PLL clock.
///
/// # Errors
///
/// + [Err]\([ErrorCode::FAIL]\): if the PLL clock is configured as the system clock.
/// + [Err]\([ErrorCode::BUSY]\): disabling the PLL clock took to long. Retry to ensure it is
/// not running.
pub fn disable(&self) -> Result<(), ErrorCode> {
// Can't disable the PLL clock when it is used as the system clock
if self.rcc.get_sys_clock_source() == SysClockSource::PLL {
return Err(ErrorCode::FAIL);
}
// Disable the PLL clock
self.rcc.disable_pll_clock();
// Wait to unlock the PLL clock
// 10 was obtained by testing in release mode
for _ in 0..10 {
if !self.rcc.is_locked_pll_clock() {
return Ok(());
}
}
// If the waiting was too long, return ErrorCode::BUSY
Err(ErrorCode::BUSY)
}
/// Check whether the PLL clock is enabled or not.
///
/// # Returns
///
/// + [false]: the PLL clock is not enabled
/// + [true]: the PLL clock is enabled
pub fn is_enabled(&self) -> bool {
self.rcc.is_enabled_pll_clock()
}
/// Set the frequency of the PLL clock.
///
/// The PLL clock has two outputs:
///
/// + main output used for configuring the system clock
/// + a second output called PLL48CLK used by OTG USB FS (48MHz), the random number generator
/// (≤ 48MHz) and the SDIO (≤ 48MHz) clocks.
///
/// When calling this method, the given frequency is set for the main output. The method will
/// attempt to configure the PLL48CLK output to 48MHz, or to the highest value less than 48MHz
/// if it is not possible to get a precise 48MHz. In order to obtain a precise 48MHz frequency
/// (for the OTG USB FS peripheral), one should call this method with a frequency of 1, 1.5, 2,
/// 2.5 ... 4 x 48MHz.
///
/// # Parameters
///
/// + pll_source: PLL source clock (HSI or HSE)
///
/// + source_frequency: the frequency of the PLL source clock in MHz. For the HSI the frequency
/// is fixed to 16MHz. For the HSE, the frequency is hardware-dependent
///
/// + desired_frequency_mhz: the desired frequency in MHz. Supported values: 24-216MHz for
/// STM32F401 and 13-216MHz for all the other chips
///
/// # Errors
///
/// + [Err]\([ErrorCode::INVAL]\): if the desired frequency can't be achieved
/// + [Err]\([ErrorCode::FAIL]\): if the PLL clock is already enabled. It must be disabled before
/// configuring it.
pub(super) fn set_frequency_mhz(
&self,
pll_source: PllSource,
source_frequency: usize,
desired_frequency_mhz: usize,
) -> Result<(), ErrorCode> {
// Check for errors:
// + PLL clock running
// + invalid frequency
if self.rcc.is_enabled_pll_clock() {
return Err(ErrorCode::FAIL);
} else if desired_frequency_mhz < PllConstants::MIN_FREQ_MHZ
|| desired_frequency_mhz > PllConstants::MAX_FREQ_MHZ
{
return Err(ErrorCode::INVAL);
}
// The output frequencies for the PLL clock is computed as following:
// Source frequency / PLLM = VCO input frequency (must range from 1MHz to 2MHz)
// VCO output frequency = VCO input frequency * PLLN (must range from 100MHz to 432MHz)
// PLL output frequency = VCO output frequency / PLLP
// PLL48CLK = VCO output frequency / PLLQ
// Set PLL source (HSI or HSE)
if self.set_pll_source_clock(pll_source) != Ok(()) {
return Err(ErrorCode::FAIL);
}
// Compute PLLP
let pllp = Self::compute_pllp(desired_frequency_mhz);
self.rcc.set_pll_clock_p_divider(pllp);
// Compute PLLN
let plln = Self::compute_plln(desired_frequency_mhz, source_frequency, pllp);
self.rcc.set_pll_clock_n_multiplier(plln);
// Compute PLLQ
let vco_output_frequency = source_frequency / DEFAULT_PLLM_VALUE as usize * plln;
let pllq = Self::compute_pllq(vco_output_frequency);
self.rcc.set_pll_clock_q_divider(pllq);
// Check if PLL48CLK is calibrated, e.g. its frequency is exactly 48MHz
let pll48_frequency = vco_output_frequency / pllq as usize;
self.pll48_calibrated
.set(pll48_frequency == 48 && vco_output_frequency % pllq as usize == 0);
// Cache the frequency so it is not computed every time a get method is called
self.frequency_mhz.set(desired_frequency_mhz);
self.pll48_frequency_mhz.set(pll48_frequency);
Ok(())
}
/// Get the frequency in MHz of the PLL clock.
///
/// # Returns
///
/// + [Some]\(frequency_mhz\): if the PLL clock is enabled.
/// + [None]: if the PLL clock is disabled.
pub fn get_frequency_mhz(&self) -> Option<usize> {
if self.is_enabled() {
self.frequency_mhz.get()
} else {
None
}
}
/// Get the frequency in MHz of the PLL clock from RCC registers instead of using the cached
/// value.
///
/// # Returns
///
/// + [Some]\(frequency_mhz\): if the PLL clock is enabled.
/// + [None]: if the PLL clock is disabled.
pub fn get_frequency_mhz_no_cache(&self, source_frequency: usize) -> Option<usize> {
if self.is_enabled() {
let pllm = self.rcc.get_pll_clocks_m_divider() as usize;
let plln = self.rcc.get_pll_clock_n_multiplier();
let pllp: usize = self.rcc.get_pll_clock_p_divider().into();
Some(source_frequency / pllm * plln / pllp)
} else {
None
}
}
/// Get the frequency in MHz of the PLL48 clock.
///
/// **NOTE:** If the PLL clock was not configured with a frequency multiple of 48MHz, the
/// returned value is inaccurate.
///
/// # Returns
///
/// + [Some]\(frequency_mhz\): if the PLL clock is enabled.
/// + [None]: if the PLL clock is disabled.
pub fn get_frequency_mhz_pll48(&self) -> Option<usize> {
if self.is_enabled() {
self.pll48_frequency_mhz.get()
} else {
None
}
}
/// Check if the PLL48 clock is calibrated (its output is exactly 48MHz).
///
/// A frequency of 48MHz is required for USB OTG FS.
///
/// # Returns
///
/// + [true]: the PLL48 clock frequency is exactly 48MHz.
/// + [false]: the PLL48 clock is not exactly 48MHz.
pub fn is_pll48_calibrated(&self) -> bool {
self.pll48_calibrated.get()
}
}
/// Tests for the PLL clock
///
/// This module ensures that the PLL clock works as expected. If changes are brought to the PLL
/// clock, ensure to run all the tests to see if anything is broken.
///
/// # Usage
///
/// First, import the [crate::clocks::pll] module inside the board main file:
///
/// ```rust,ignore
/// use stm32f429zi::pll;
/// ```
/// To run all the available tests, add this line before **kernel::process::load_processes()**:
///
/// ```rust,ignore
/// pll::tests::run(&peripherals.stm32f4.clocks.pll);
/// ```
///
/// If everything works as expected, the following message should be printed on the kernel console:
///
/// ```text
/// ===============================================
/// Testing PLL...
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Testing PLL configuration...
/// Finished testing PLL configuration.
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Testing PLL struct...
/// Finished testing PLL struct.
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Finished testing PLL. Everything is alright!
/// ===============================================
/// ```
///
/// There is also the possibility to run a part of the test suite. Check the functions present in
/// this module for more details.
///
/// # Errors
///
/// If there are any errors, open an issue ticket at <https://github.com/tock/tock>. Please provide the
/// output of the test execution.
pub mod tests {
use super::*;
// Depending on the default PLLM value, the computed PLLN value changes.
const MULTIPLIER: usize = match DEFAULT_PLLM_VALUE {
PLLM::DivideBy8 => 1,
PLLM::DivideBy16 => 2,
};
/// Test if the configuration parameters are correctly computed for a given frequency.
///
/// # Usage
///
/// ```rust,ignore
/// use stm32f429zi::pll; // Import the pll module
/// /* Code goes here */
/// pll::test::test_pll_config(&peripherals.stm32f4.pll); // Run the tests
/// ```
pub fn test_pll_config<PllConstants: clock_constants::PllConstants>() {
debug!("Testing PLL configuration...");
// 13 or 24MHz --> minimum value
let mut pllp = Pll::<PllConstants>::compute_pllp(PllConstants::MIN_FREQ_MHZ);
assert_eq!(PLLP::DivideBy8, pllp);
let mut plln =
Pll::<PllConstants>::compute_plln(PllConstants::MIN_FREQ_MHZ, HSI_FREQUENCY_MHZ, pllp);
#[cfg(not(feature = "stm32f401"))]
assert_eq!(52 * MULTIPLIER, plln);
#[cfg(feature = "stm32f401")]
assert_eq!(96 * MULTIPLIER, plln);
let mut vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
let mut pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
#[cfg(not(feature = "stm32f401"))]
assert_eq!(PLLQ::DivideBy3, pllq);
#[cfg(feature = "stm32f401")]
assert_eq!(PLLQ::DivideBy4, pllq);
// 25MHz --> minimum required value for Ethernet devices
pllp = Pll::<PllConstants>::compute_pllp(25);
assert_eq!(PLLP::DivideBy8, pllp);
plln = Pll::<PllConstants>::compute_plln(25, HSI_FREQUENCY_MHZ, pllp);
assert_eq!(100 * MULTIPLIER, plln);
vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
assert_eq!(PLLQ::DivideBy5, pllq);
// 54MHz --> last frequency before PLLP becomes DivideBy6
pllp = Pll::<PllConstants>::compute_pllp(54);
assert_eq!(PLLP::DivideBy8, pllp);
plln = Pll::<PllConstants>::compute_plln(54, HSI_FREQUENCY_MHZ, pllp);
assert_eq!(216 * MULTIPLIER, plln);
vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
assert_eq!(PLLQ::DivideBy9, pllq);
// 55MHz --> PLLP becomes DivideBy6
pllp = Pll::<PllConstants>::compute_pllp(55);
assert_eq!(PLLP::DivideBy6, pllp);
plln = Pll::<PllConstants>::compute_plln(55, HSI_FREQUENCY_MHZ, pllp);
assert_eq!(165 * MULTIPLIER, plln);
vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
assert_eq!(PLLQ::DivideBy7, pllq);
// 70MHz --> Another value for PLLP::DivideBy6
pllp = Pll::<PllConstants>::compute_pllp(70);
assert_eq!(PLLP::DivideBy6, pllp);
plln = Pll::<PllConstants>::compute_plln(70, HSI_FREQUENCY_MHZ, pllp);
assert_eq!(210 * MULTIPLIER, plln);
vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
assert_eq!(PLLQ::DivideBy9, pllq);
// 72MHz --> last frequency before PLLP becomes DivideBy4
pllp = Pll::<PllConstants>::compute_pllp(72);
assert_eq!(PLLP::DivideBy6, pllp);
plln = Pll::<PllConstants>::compute_plln(72, HSI_FREQUENCY_MHZ, pllp);
assert_eq!(216 * MULTIPLIER, plln);
vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
assert_eq!(PLLQ::DivideBy9, pllq);
// 73MHz --> PLLP becomes DivideBy4
pllp = Pll::<PllConstants>::compute_pllp(73);
assert_eq!(PLLP::DivideBy4, pllp);
plln = Pll::<PllConstants>::compute_plln(73, HSI_FREQUENCY_MHZ, pllp);
assert_eq!(146 * MULTIPLIER, plln);
vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
assert_eq!(PLLQ::DivideBy7, pllq);
// 100MHz --> Another value for PLLP::DivideBy4
pllp = Pll::<PllConstants>::compute_pllp(100);
assert_eq!(PLLP::DivideBy4, pllp);
plln = Pll::<PllConstants>::compute_plln(100, HSI_FREQUENCY_MHZ, pllp);
assert_eq!(200 * MULTIPLIER, plln);
vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
assert_eq!(PLLQ::DivideBy9, pllq);
// 108MHz --> last frequency before PLLP becomes DivideBy2
pllp = Pll::<PllConstants>::compute_pllp(108);
assert_eq!(PLLP::DivideBy4, pllp);
plln = Pll::<PllConstants>::compute_plln(108, HSI_FREQUENCY_MHZ, pllp);
assert_eq!(216 * MULTIPLIER, plln);
vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
assert_eq!(PLLQ::DivideBy9, pllq);
// 109MHz --> PLLP becomes DivideBy2
pllp = Pll::<PllConstants>::compute_pllp(109);
assert_eq!(PLLP::DivideBy2, pllp);
plln = Pll::<PllConstants>::compute_plln(109, HSI_FREQUENCY_MHZ, pllp);
assert_eq!(109 * MULTIPLIER, plln);
vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
assert_eq!(PLLQ::DivideBy5, pllq);
// 125MHz --> Another value for PLLP::DivideBy2
pllp = Pll::<PllConstants>::compute_pllp(125);
assert_eq!(PLLP::DivideBy2, pllp);
plln = Pll::<PllConstants>::compute_plln(125, HSI_FREQUENCY_MHZ, pllp);
assert_eq!(125 * MULTIPLIER, plln);
vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
assert_eq!(PLLQ::DivideBy6, pllq);
// 180MHz --> Max frequency for the CPU
pllp = Pll::<PllConstants>::compute_pllp(180);
assert_eq!(PLLP::DivideBy2, pllp);
plln = Pll::<PllConstants>::compute_plln(180, HSI_FREQUENCY_MHZ, pllp);
assert_eq!(180 * MULTIPLIER, plln);
vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
assert_eq!(PLLQ::DivideBy8, pllq);
// 216MHz --> Max frequency for the PLL due to the VCO output frequency limit
pllp = Pll::<PllConstants>::compute_pllp(216);
assert_eq!(PLLP::DivideBy2, pllp);
plln = Pll::<PllConstants>::compute_plln(216, HSI_FREQUENCY_MHZ, pllp);
assert_eq!(216 * MULTIPLIER, plln);
vco_output_frequency_mhz = HSI_FREQUENCY_MHZ / DEFAULT_PLLM_VALUE as usize * plln;
pllq = Pll::<PllConstants>::compute_pllq(vco_output_frequency_mhz);
assert_eq!(PLLQ::DivideBy9, pllq);
debug!("Finished testing PLL configuration.");
}
/// Check if the PLL works as expected.
///
/// **NOTE:** it is highly recommended to call [test_pll_config]
/// first to check whether the configuration parameters are correctly computed.
///
/// # Usage
///
/// ```rust,ignore
/// use stm32f429zi::pll; // Import the PLL module
/// /* Code goes here */
/// pll::test::test_pll_struct(&peripherals.stm32f4.pll); // Run the tests
/// ```
pub fn test_pll_struct<'a, PllConstants: clock_constants::PllConstants>(
pll: &'a Pll<'a, PllConstants>,
) {
debug!("Testing PLL struct...");
// Make sure the PLL clock is disabled
assert_eq!(Ok(()), pll.disable());
assert!(!pll.is_enabled());
// Attempting to configure the PLL with either too high or too low frequency
assert_eq!(
Err(ErrorCode::INVAL),
pll.set_frequency_mhz(PllSource::HSI, HSI_FREQUENCY_MHZ, 12)
);
assert_eq!(
Err(ErrorCode::INVAL),
pll.set_frequency_mhz(PllSource::HSI, HSI_FREQUENCY_MHZ, 217)
);
// Start the PLL with the default configuration.
assert_eq!(Ok(()), pll.enable());
// Make sure the PLL is enabled.
assert!(pll.is_enabled());
// By default, the PLL clock is set to 96MHz
assert_eq!(Some(96), pll.get_frequency_mhz());
// By default, the PLL48 clock is correctly calibrated
assert!(pll.is_pll48_calibrated());
// Impossible to configure the PLL clock once it is enabled.
assert_eq!(
Err(ErrorCode::FAIL),
pll.set_frequency_mhz(PllSource::HSI, HSI_FREQUENCY_MHZ, 50)
);
// Stop the PLL in order to reconfigure it.
assert_eq!(Ok(()), pll.disable());
// Configure the PLL clock to run at 25MHz
assert_eq!(
Ok(()),
pll.set_frequency_mhz(PllSource::HSI, HSI_FREQUENCY_MHZ, 25)
);
// Start the PLL with the new configuration
assert_eq!(Ok(()), pll.enable());
// get_frequency() method should reflect the new change
assert_eq!(Some(25), pll.get_frequency_mhz());
// Since 25 is not a multiple of 48, the PLL48 clock is not correctly calibrated
assert!(!pll.is_pll48_calibrated());
// The expected PLL48 clock value in this case should be approximately 40 MHz.
// It is actually exactly 40MHz in this particular case.
assert_eq!(Some(40), pll.get_frequency_mhz_pll48());
// Stop the PLL clock
assert_eq!(Ok(()), pll.disable());
// Attempting to get the frequency of the PLL clock when it is disabled should return None.
assert_eq!(None, pll.get_frequency_mhz());
// Same for PLL48 clock
assert_eq!(None, pll.get_frequency_mhz_pll48());
// Attempting to configure the PLL clock with a frequency multiple of 48MHz
assert_eq!(
Ok(()),
pll.set_frequency_mhz(PllSource::HSI, HSI_FREQUENCY_MHZ, 144)
);
assert_eq!(Ok(()), pll.enable());
assert_eq!(Some(144), pll.get_frequency_mhz());
// PLL48 clock output should be correctly calibrated
assert!(pll.is_pll48_calibrated());
assert_eq!(Some(48), pll.get_frequency_mhz_pll48());
// Reconfigure the clock for 100MHz
assert_eq!(Ok(()), pll.disable());
assert_eq!(
Ok(()),
pll.set_frequency_mhz(PllSource::HSI, HSI_FREQUENCY_MHZ, 100)
);
assert_eq!(Ok(()), pll.enable());
assert_eq!(Some(100), pll.get_frequency_mhz());
// In this case, the PLL48 clock is not correctly calibrated. Its frequency is
// approximately 44MHz.
assert!(!pll.is_pll48_calibrated());
assert_eq!(Some(44), pll.get_frequency_mhz_pll48());
// Configure the clock to 72MHz = 48MHz * 1.5
assert_eq!(Ok(()), pll.disable());
assert_eq!(
Ok(()),
pll.set_frequency_mhz(PllSource::HSI, HSI_FREQUENCY_MHZ, 72)
);
assert_eq!(Ok(()), pll.enable());
assert_eq!(Some(72), pll.get_frequency_mhz());
// In this case, the PLL48 clock is correctly calibrated
assert!(pll.is_pll48_calibrated());
assert_eq!(Some(48), pll.get_frequency_mhz_pll48());
// Turn off the PLL clock
assert_eq!(Ok(()), pll.disable());
assert!(!pll.is_enabled());
debug!("Finished testing PLL struct.");
}
/// Run the entire test suite.
///
/// # Usage
///
/// ```rust,ignore
/// use stm32f429zi::pll; // Import the PLL module
/// /* Code goes here */
/// pll::test::run(&peripherals.stm32f4.pll); // Run the tests
/// ```
pub fn run<'a, PllConstants: clock_constants::PllConstants>(pll: &'a Pll<'a, PllConstants>) {
debug!("");
debug!("===============================================");
debug!("Testing PLL...");
debug!("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
test_pll_config::<PllConstants>();
debug!("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
test_pll_struct(pll);
debug!("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
debug!("Finished testing PLL. Everything is alright!");
debug!("===============================================");
debug!("");
}
}