1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! PWM driver for nRF52.
use kernel::hil;
use kernel::utilities::cells::VolatileCell;
use kernel::utilities::registers::interfaces::Writeable;
use kernel::utilities::registers::{register_bitfields, ReadWrite, WriteOnly};
use kernel::utilities::StaticRef;
use kernel::ErrorCode;
#[repr(C)]
struct PwmRegisters {
_reserved0: [u8; 4],
/// Stops PWM pulse generation on all channels at the end of current PWM period
tasks_stop: WriteOnly<u32, TASK::Register>,
/// Loads the first PWM value on all enabled channels
tasks_seqstart: [WriteOnly<u32, TASK::Register>; 2],
/// Steps by one value in the current sequence on all enabled channels if DECODER.MO
tasks_nextstep: WriteOnly<u32, TASK::Register>,
_reserved1: [u8; 240],
/// Response to STOP task, emitted when PWM pulses are no longer generated
events_stopped: ReadWrite<u32, EVENT::Register>,
/// First PWM period started on sequence 0
events_seqstarted: [ReadWrite<u32, EVENT::Register>; 2],
/// Emitted at end of every sequence 0, when last value from RAM has been
/// applied to the wave counter
events_seqend: [ReadWrite<u32, EVENT::Register>; 2],
/// Emitted at the end of each PWM period
events_pwmperiodend: ReadWrite<u32, EVENT::Register>,
/// Concatenated sequences have been played the amount of times defined in LOOP.CNT
events_loopsdone: ReadWrite<u32, EVENT::Register>,
_reserved2: [u8; 224],
/// Shortcut register
shorts: ReadWrite<u32, SHORTS::Register>,
_reserved3: [u8; 252],
/// Enable or disable interrupt
inten: ReadWrite<u32, INTEN::Register>,
/// Enable interrupt
intenset: ReadWrite<u32, INTEN::Register>,
/// Disable interrupt
intenclr: ReadWrite<u32, INTEN::Register>,
_reserved4: [u8; 500],
/// PWM module enable register
enable: ReadWrite<u32, ENABLE::Register>,
/// Selects operating mode of the wave counter
mode: ReadWrite<u32, MODE::Register>,
/// Value up to which the pulse generator counter counts
countertop: ReadWrite<u32, COUNTERTOP::Register>,
/// Configuration for PWM_CLK
prescaler: ReadWrite<u32, PRESCALER::Register>,
/// Configuration of the decoder
decoder: ReadWrite<u32, DECODER::Register>,
/// Amount of playback of a loop
loopreg: ReadWrite<u32, LOOP::Register>,
_reserved5: [u8; 8],
seq0: PwmSeqRegisters,
_reserved6: [u8; 16],
seq1: PwmSeqRegisters,
_reserved7: [u8; 16],
psel_out: [VolatileCell<nrf5x::pinmux::Pinmux>; 4],
}
#[repr(C)]
struct PwmSeqRegisters {
seq_ptr: VolatileCell<*const u16>,
seq_cnt: ReadWrite<u32, SEQ_CNT::Register>,
seq_refresh: ReadWrite<u32, SEQ_REFRESH::Register>,
seq_enddelay: ReadWrite<u32, SEQ_ENDDELAY::Register>,
}
register_bitfields![u32,
SHORTS [
/// Shortcut between EVENTS_SEQEND[0] event and TASKS_STOP task
SEQEND0_STOP 0,
/// Shortcut between EVENTS_SEQEND[1] event and TASKS_STOP task
SEQEND1_STOP 1,
/// Shortcut between EVENTS_LOOPSDONE event and TASKS_SEQSTART[0] task
LOOPSDONE_SEQSTART0 2,
/// Shortcut between EVENTS_LOOPSDONE event and TASKS_SEQSTART[1] task
LOOPSDONE_SEQSTART1 3,
/// Shortcut between EVENTS_LOOPSDONE event and TASKS_STOP task
LOOPSDONE_STOP 4
],
INTEN [
/// Enable or disable interrupt on EVENTS_STOPPED event
STOPPED 1,
/// Enable or disable interrupt on EVENTS_SEQSTARTED[0] event
SEQSTARTED0 2,
/// Enable or disable interrupt on EVENTS_SEQSTARTED[1] event
SEQSTARTED1 3,
/// Enable or disable interrupt on EVENTS_SEQEND[0] event
SEQEND0 4,
/// Enable or disable interrupt on EVENTS_SEQEND[1] event
SEQEND1 5,
/// Enable or disable interrupt on EVENTS_PWMPERIODEND event
PWMPERIODEND 6,
/// Enable or disable interrupt on EVENTS_LOOPSDONE event
LOOPSDONE 7
],
ENABLE [
ENABLE 0
],
MODE [
UPDOWN OFFSET(0) NUMBITS(1) [
Up = 0,
UpAndDown = 1
]
],
COUNTERTOP [
COUNTERTOP OFFSET(0) NUMBITS(15) []
],
PRESCALER [
PRESCALER OFFSET(0) NUMBITS(3) [
DIV_1 = 0,
DIV_2 = 1,
DIV_4 = 2,
DIV_8 = 3,
DIV_16 = 4,
DIV_32 = 5,
DIV_64 = 6,
DIV_128 = 7
]
],
DECODER [
/// How a sequence is read from RAM and spread to the compare register
LOAD OFFSET(0) NUMBITS(2) [
/// 1st half word (16-bit) used in all PWM channels 0..3
Common = 0,
/// 1st half word (16-bit) used in channel 0..1; 2nd word in channel 2..3
Grouped = 1,
/// 1st half word (16-bit) in ch.0; 2nd in ch.1; ...; 4th in ch.3
Individual = 2,
/// 1st half word (16-bit) in ch.0; 2nd in ch.1; ...; 4th in COUNTERTOP
Waveform = 3
],
/// Selects source for advancing the active sequence
MODE OFFSET(8) NUMBITS(1) [
/// SEQ[n].REFRESH is used to determine loading internal compare registers
RefreshCount = 0,
/// NEXTSTEP task causes a new value to be loaded to internal compare registers
NextStep = 1
]
],
LOOP [
/// Number of playbacks of pattern cycles. 0 to disable.
CNT OFFSET(0) NUMBITS(16) []
],
EVENT [
EVENT 0
],
TASK [
TASK 0
],
SEQ_CNT [
CNT OFFSET(0) NUMBITS(15) []
],
SEQ_REFRESH [
CNT OFFSET(0) NUMBITS(24) []
],
SEQ_ENDDELAY [
CNT OFFSET(0) NUMBITS(24) []
]
];
const PWM0_BASE: StaticRef<PwmRegisters> =
unsafe { StaticRef::new(0x4001C000 as *const PwmRegisters) };
/// `DUTY_CYCLES` is a static array that must be passed to the PWM hardware.
/// The nRF52 hardware uses this static array in memory to enable switching
/// between multiple duty cycles automatically while generating the PWM output.
/// This isn't ideal from a Rust perspective, but the peripheral hardware must
/// be passed a pointer.
static mut DUTY_CYCLES: [u16; 4] = [0; 4];
pub struct Pwm {
registers: StaticRef<PwmRegisters>,
}
impl Pwm {
pub const fn new() -> Pwm {
Pwm {
registers: PWM0_BASE,
}
}
fn start_pwm(
&self,
pin: &nrf5x::pinmux::Pinmux,
frequency_hz: usize,
duty_cycle: usize,
) -> Result<(), ErrorCode> {
// If frequency is 0, we can just stop the PWM and have it do nothing.
if frequency_hz == 0 {
return self.stop_pwm(pin);
}
let prescaler = 0;
let counter_top = (16000000 / frequency_hz) >> prescaler;
// Use the passed in duty cycle to calculate the value we pass to the
// hardware. A 50% duty cycle is half of counter_top, a 10% duty cycle
// would be 90% of counter_top.
//
// duty_cycle
// dc_out = counter_top * (1 - ---------- )
// 5333333
let dc_out = counter_top - ((3 * duty_cycle) / frequency_hz);
// Configure the pin
self.registers.psel_out[0].set(*pin);
// Start by enabling the peripheral.
self.registers.enable.write(ENABLE::ENABLE::SET);
// Want count up mode.
self.registers.mode.write(MODE::UPDOWN::Up);
// Disable loop (repeat) mode.
self.registers.loopreg.write(LOOP::CNT.val(0));
// Set the decoder settings.
self.registers
.decoder
.write(DECODER::LOAD::Common + DECODER::MODE::RefreshCount);
// Set the prescaler.
self.registers.prescaler.write(PRESCALER::PRESCALER::DIV_1);
// Set the value to count to.
self.registers
.countertop
.write(COUNTERTOP::COUNTERTOP.val(counter_top as u32));
// Setup the duty cycles
unsafe {
DUTY_CYCLES[0] = dc_out as u16;
self.registers
.seq0
.seq_ptr
.set(core::ptr::addr_of!(DUTY_CYCLES) as *const u16);
}
self.registers.seq0.seq_cnt.write(SEQ_CNT::CNT.val(1));
self.registers
.seq0
.seq_refresh
.write(SEQ_REFRESH::CNT.val(0));
self.registers
.seq0
.seq_enddelay
.write(SEQ_ENDDELAY::CNT.val(0));
// Start
self.registers.tasks_seqstart[0].write(TASK::TASK::SET);
Ok(())
}
fn stop_pwm(&self, _pin: &nrf5x::pinmux::Pinmux) -> Result<(), ErrorCode> {
self.registers.tasks_stop.write(TASK::TASK::SET);
self.registers.enable.write(ENABLE::ENABLE::CLEAR);
Ok(())
}
}
impl hil::pwm::Pwm for Pwm {
type Pin = nrf5x::pinmux::Pinmux;
fn start(&self, pin: &Self::Pin, frequency: usize, duty_cycle: usize) -> Result<(), ErrorCode> {
self.start_pwm(pin, frequency, duty_cycle)
}
fn stop(&self, pin: &Self::Pin) -> Result<(), ErrorCode> {
self.stop_pwm(pin)
}
fn get_maximum_frequency_hz(&self) -> usize {
// Counter runs at 16 MHz, and the minimum value for the COUNTERTOP
// register is 3. 16000000 / 3 = 5333333
5333333
}
fn get_maximum_duty_cycle(&self) -> usize {
// We use the max frequency as the max duty cycle as well. This makes
// calculating `dc_out` straightforward.
5333333
}
}