kernel/
processbuffer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! Data structures for passing application memory to the kernel.
//!
//! A Tock process can pass read-write or read-only buffers into the
//! kernel for it to use. The kernel checks that read-write buffers
//! exist within a process's RAM address space, and that read-only
//! buffers exist either within its RAM or flash address space. These
//! buffers are shared with the allow_read_write() and
//! allow_read_only() system calls.
//!
//! A read-write and read-only call is mapped to the high-level Rust
//! types [`ReadWriteProcessBuffer`] and [`ReadOnlyProcessBuffer`]
//! respectively. The memory regions can be accessed through the
//! [`ReadableProcessBuffer`] and [`WriteableProcessBuffer`] traits,
//! implemented on the process buffer structs.
//!
//! Each access to the buffer structs requires a liveness check to ensure that
//! the process memory is still valid. For a more traditional interface, users
//! can convert buffers into [`ReadableProcessSlice`] or
//! [`WriteableProcessSlice`] and use these for the lifetime of their
//! operations. Users cannot hold live-lived references to these slices,
//! however.

use core::cell::Cell;
use core::marker::PhantomData;
use core::ops::{Deref, Index, Range, RangeFrom, RangeTo};

use crate::capabilities;
use crate::process::{self, ProcessId};
use crate::ErrorCode;

/// Convert a process buffer's internal representation to a
/// [`ReadableProcessSlice`].
///
/// This function will automatically convert zero-length process
/// buffers into valid zero-sized Rust slices regardless of the value
/// of `ptr`.
///
/// # Safety requirements
///
/// In the case of `len != 0`, the memory `[ptr; ptr + len)` must be
/// within a single process' address space, and `ptr` must be
/// nonzero. This memory region must be mapped as _readable_, and
/// optionally _writable_ and _executable_. It must be allocated
/// within a single process' address space for the entire lifetime
/// `'a`.
///
/// It is sound for multiple overlapping [`ReadableProcessSlice`]s or
/// [`WriteableProcessSlice`]s to be in scope at the same time.
unsafe fn raw_processbuf_to_roprocessslice<'a>(
    ptr: *const u8,
    len: usize,
) -> &'a ReadableProcessSlice {
    // Transmute a reference to a slice of Cell<u8>s into a reference
    // to a ReadableProcessSlice. This is possible as
    // ReadableProcessSlice is a #[repr(transparent)] wrapper around a
    // [ReadableProcessByte], which is a #[repr(transparent)] wrapper
    // around a [Cell<u8>], which is a #[repr(transparent)] wrapper
    // around an [UnsafeCell<u8>], which finally #[repr(transparent)]
    // wraps a [u8]
    core::mem::transmute::<&[u8], &ReadableProcessSlice>(
        // Rust has very strict requirements on pointer validity[1]
        // which also in part apply to accesses of length 0. We allow
        // an application to supply arbitrary pointers if the buffer
        // length is 0, but this is not allowed for Rust slices. For
        // instance, a null pointer is _never_ valid, not even for
        // accesses of size zero.
        //
        // To get a pointer which does not point to valid (allocated)
        // memory, but is safe to construct for accesses of size zero,
        // we must call NonNull::dangling(). The resulting pointer is
        // guaranteed to be well-aligned and uphold the guarantees
        // required for accesses of size zero.
        //
        // [1]: https://doc.rust-lang.org/core/ptr/index.html#safety
        match len {
            0 => core::slice::from_raw_parts(core::ptr::NonNull::<u8>::dangling().as_ptr(), 0),
            _ => core::slice::from_raw_parts(ptr, len),
        },
    )
}

/// Convert an process buffers's internal representation to a
/// [`WriteableProcessSlice`].
///
/// This function will automatically convert zero-length process
/// buffers into valid zero-sized Rust slices regardless of the value
/// of `ptr`.
///
/// # Safety requirements
///
/// In the case of `len != 0`, the memory `[ptr; ptr + len)` must be
/// within a single process' address space, and `ptr` must be
/// nonzero. This memory region must be mapped as _readable_ and
/// _writable_, and optionally _executable_. It must be allocated
/// within a single process' address space for the entire lifetime
/// `'a`.
///
/// No other mutable or immutable Rust reference pointing to an
/// overlapping memory region, which is not also created over
/// `UnsafeCell`, may exist over the entire lifetime `'a`. Even though
/// this effectively returns a slice of [`Cell`]s, writing to some
/// memory through a [`Cell`] while another reference is in scope is
/// unsound. Because a process is free to modify its memory, this is
/// -- in a broader sense -- true for all process memory.
///
/// However, it is sound for multiple overlapping
/// [`ReadableProcessSlice`]s or [`WriteableProcessSlice`]s to be in
/// scope at the same time.
unsafe fn raw_processbuf_to_rwprocessslice<'a>(
    ptr: *mut u8,
    len: usize,
) -> &'a WriteableProcessSlice {
    // Transmute a reference to a slice of Cell<u8>s into a reference
    // to a ReadableProcessSlice. This is possible as
    // ReadableProcessSlice is a #[repr(transparent)] wrapper around a
    // [ReadableProcessByte], which is a #[repr(transparent)] wrapper
    // around a [Cell<u8>], which is a #[repr(transparent)] wrapper
    // around an [UnsafeCell<u8>], which finally #[repr(transparent)]
    // wraps a [u8]
    core::mem::transmute::<&[u8], &WriteableProcessSlice>(
        // Rust has very strict requirements on pointer validity[1]
        // which also in part apply to accesses of length 0. We allow
        // an application to supply arbitrary pointers if the buffer
        // length is 0, but this is not allowed for Rust slices. For
        // instance, a null pointer is _never_ valid, not even for
        // accesses of size zero.
        //
        // To get a pointer which does not point to valid (allocated)
        // memory, but is safe to construct for accesses of size zero,
        // we must call NonNull::dangling(). The resulting pointer is
        // guaranteed to be well-aligned and uphold the guarantees
        // required for accesses of size zero.
        //
        // [1]: https://doc.rust-lang.org/core/ptr/index.html#safety
        match len {
            0 => core::slice::from_raw_parts_mut(core::ptr::NonNull::<u8>::dangling().as_ptr(), 0),
            _ => core::slice::from_raw_parts_mut(ptr, len),
        },
    )
}

/// A readable region of userspace process memory.
///
/// This trait can be used to gain read-only access to memory regions
/// wrapped in either a [`ReadOnlyProcessBuffer`] or a
/// [`ReadWriteProcessBuffer`] type.
pub trait ReadableProcessBuffer {
    /// Length of the memory region.
    ///
    /// If the process is no longer alive and the memory has been
    /// reclaimed, this method must return 0.
    ///
    /// # Default Process Buffer
    ///
    /// A default instance of a process buffer must return 0.
    fn len(&self) -> usize;

    /// Pointer to the first byte of the userspace memory region.
    ///
    /// If the length of the initially shared memory region
    /// (irrespective of the return value of
    /// [`len`](ReadableProcessBuffer::len)) is 0, this function returns
    /// a pointer to address `0x0`. This is because processes may
    /// allow buffers with length 0 to share no memory with the
    /// kernel. Because these buffers have zero length, they may have
    /// any pointer value. However, these _dummy addresses_ should not
    /// be leaked, so this method returns 0 for zero-length slices.
    ///
    /// # Default Process Buffer
    ///
    /// A default instance of a process buffer must return a pointer
    /// to address `0x0`.
    fn ptr(&self) -> *const u8;

    /// Applies a function to the (read only) process slice reference
    /// pointed to by the process buffer.
    ///
    /// If the process is no longer alive and the memory has been
    /// reclaimed, this method must return
    /// `Err(process::Error::NoSuchApp)`.
    ///
    /// # Default Process Buffer
    ///
    /// A default instance of a process buffer must return
    /// `Err(process::Error::NoSuchApp)` without executing the passed
    /// closure.
    fn enter<F, R>(&self, fun: F) -> Result<R, process::Error>
    where
        F: FnOnce(&ReadableProcessSlice) -> R;
}

/// A readable and writeable region of userspace process memory.
///
/// This trait can be used to gain read-write access to memory regions
/// wrapped in a [`ReadWriteProcessBuffer`].
///
/// This is a supertrait of [`ReadableProcessBuffer`], which features
/// methods allowing mutable access.
pub trait WriteableProcessBuffer: ReadableProcessBuffer {
    /// Applies a function to the mutable process slice reference
    /// pointed to by the [`ReadWriteProcessBuffer`].
    ///
    /// If the process is no longer alive and the memory has been
    /// reclaimed, this method must return
    /// `Err(process::Error::NoSuchApp)`.
    ///
    /// # Default Process Buffer
    ///
    /// A default instance of a process buffer must return
    /// `Err(process::Error::NoSuchApp)` without executing the passed
    /// closure.
    fn mut_enter<F, R>(&self, fun: F) -> Result<R, process::Error>
    where
        F: FnOnce(&WriteableProcessSlice) -> R;
}

/// Read-only buffer shared by a userspace process.
///
/// This struct is provided to capsules when a process `allow`s a
/// particular section of its memory to the kernel and gives the
/// kernel read access to this memory.
///
/// It can be used to obtain a [`ReadableProcessSlice`], which is
/// based around a slice of [`Cell`]s. This is because a userspace can
/// `allow` overlapping sections of memory into different
/// [`ReadableProcessSlice`]. Having at least one mutable Rust slice
/// along with read-only slices to overlapping memory in Rust violates
/// Rust's aliasing rules. A slice of [`Cell`]s avoids this issue by
/// explicitly supporting interior mutability. Still, a memory barrier
/// prior to switching to userspace is required, as the compiler is
/// free to reorder reads and writes, even through [`Cell`]s.
pub struct ReadOnlyProcessBuffer {
    ptr: *const u8,
    len: usize,
    process_id: Option<ProcessId>,
}

impl ReadOnlyProcessBuffer {
    /// Construct a new [`ReadOnlyProcessBuffer`] over a given pointer and
    /// length.
    ///
    /// # Safety requirements
    ///
    /// Refer to the safety requirements of
    /// [`ReadOnlyProcessBuffer::new_external`].
    pub(crate) unsafe fn new(ptr: *const u8, len: usize, process_id: ProcessId) -> Self {
        ReadOnlyProcessBuffer {
            ptr,
            len,
            process_id: Some(process_id),
        }
    }

    /// Construct a new [`ReadOnlyProcessBuffer`] over a given pointer
    /// and length.
    ///
    /// Publicly accessible constructor, which requires the
    /// [`capabilities::ExternalProcessCapability`] capability. This
    /// is provided to allow implementations of the
    /// [`Process`](crate::process::Process) trait outside of the
    /// `kernel` crate.
    ///
    /// # Safety requirements
    ///
    /// If the length is `0`, an arbitrary pointer may be passed into
    /// `ptr`. It does not necessarily have to point to allocated
    /// memory, nor does it have to meet [Rust's pointer validity
    /// requirements](https://doc.rust-lang.org/core/ptr/index.html#safety).
    /// [`ReadOnlyProcessBuffer`] must ensure that all Rust slices
    /// with a length of `0` must be constructed over a valid (but not
    /// necessarily allocated) base pointer.
    ///
    /// If the length is not `0`, the memory region of `[ptr; ptr +
    /// len)` must be valid memory of the process of the given
    /// [`ProcessId`]. It must be allocated and and accessible over
    /// the entire lifetime of the [`ReadOnlyProcessBuffer`]. It must
    /// not point to memory outside of the process' accessible memory
    /// range, or point (in part) to other processes or kernel
    /// memory. The `ptr` must meet [Rust's requirements for pointer
    /// validity](https://doc.rust-lang.org/core/ptr/index.html#safety),
    /// in particular it must have a minimum alignment of
    /// `core::mem::align_of::<u8>()` on the respective platform. It
    /// must point to memory mapped as _readable_ and optionally
    /// _writable_ and _executable_.
    pub unsafe fn new_external(
        ptr: *const u8,
        len: usize,
        process_id: ProcessId,
        _cap: &dyn capabilities::ExternalProcessCapability,
    ) -> Self {
        Self::new(ptr, len, process_id)
    }

    /// Consumes the ReadOnlyProcessBuffer, returning its constituent
    /// pointer and size. This ensures that there cannot
    /// simultaneously be both a `ReadOnlyProcessBuffer` and a pointer
    /// to its internal data.
    ///
    /// `consume` can be used when the kernel needs to pass the
    /// underlying values across the kernel-to-user boundary (e.g., in
    /// return values to system calls).
    pub(crate) fn consume(self) -> (*const u8, usize) {
        (self.ptr, self.len)
    }
}

impl ReadableProcessBuffer for ReadOnlyProcessBuffer {
    /// Return the length of the buffer in bytes.
    fn len(&self) -> usize {
        self.process_id
            .map_or(0, |pid| pid.kernel.process_map_or(0, pid, |_| self.len))
    }

    /// Return the pointer to the start of the buffer.
    fn ptr(&self) -> *const u8 {
        if self.len == 0 {
            core::ptr::null::<u8>()
        } else {
            self.ptr
        }
    }

    /// Access the contents of the buffer in a closure.
    ///
    /// This verifies the process is still valid before accessing the underlying
    /// memory.
    fn enter<F, R>(&self, fun: F) -> Result<R, process::Error>
    where
        F: FnOnce(&ReadableProcessSlice) -> R,
    {
        match self.process_id {
            None => Err(process::Error::NoSuchApp),
            Some(pid) => pid
                .kernel
                .process_map_or(Err(process::Error::NoSuchApp), pid, |_| {
                    // Safety: `kernel.process_map_or()` validates that
                    // the process still exists and its memory is still
                    // valid. In particular, `Process` tracks the "high water
                    // mark" of memory that the process has `allow`ed to the
                    // kernel. Because `Process` does not feature an API to
                    // move the "high water mark" down again, which would be
                    // called once a `ProcessBuffer` has been passed back into
                    // the kernel, a given `Process` implementation must assume
                    // that the memory described by a once-allowed
                    // `ProcessBuffer` is still in use, and thus will not
                    // permit the process to free any memory after it has
                    // been `allow`ed to the kernel once. This guarantees
                    // that the buffer is safe to convert into a slice
                    // here. For more information, refer to the
                    // comment and subsequent discussion on tock/tock#2632:
                    // https://github.com/tock/tock/pull/2632#issuecomment-869974365
                    Ok(fun(unsafe {
                        raw_processbuf_to_roprocessslice(self.ptr, self.len)
                    }))
                }),
        }
    }
}

impl Default for ReadOnlyProcessBuffer {
    fn default() -> Self {
        ReadOnlyProcessBuffer {
            ptr: core::ptr::null_mut::<u8>(),
            len: 0,
            process_id: None,
        }
    }
}

/// Provides access to a [`ReadOnlyProcessBuffer`] with a restricted lifetime.
/// This automatically dereferences into a ReadOnlyProcessBuffer
pub struct ReadOnlyProcessBufferRef<'a> {
    buf: ReadOnlyProcessBuffer,
    _phantom: PhantomData<&'a ()>,
}

impl ReadOnlyProcessBufferRef<'_> {
    /// Construct a new [`ReadOnlyProcessBufferRef`] over a given pointer and
    /// length with a lifetime derived from the caller.
    ///
    /// # Safety requirements
    ///
    /// Refer to the safety requirements of
    /// [`ReadOnlyProcessBuffer::new_external`]. The derived lifetime can
    /// help enforce the invariant that this incoming pointer may only
    /// be access for a certain duration.
    pub(crate) unsafe fn new(ptr: *const u8, len: usize, process_id: ProcessId) -> Self {
        Self {
            buf: ReadOnlyProcessBuffer::new(ptr, len, process_id),
            _phantom: PhantomData,
        }
    }
}

impl Deref for ReadOnlyProcessBufferRef<'_> {
    type Target = ReadOnlyProcessBuffer;
    fn deref(&self) -> &Self::Target {
        &self.buf
    }
}

/// Read-writable buffer shared by a userspace process.
///
/// This struct is provided to capsules when a process `allows` a
/// particular section of its memory to the kernel and gives the
/// kernel read and write access to this memory.
///
/// It can be used to obtain a [`WriteableProcessSlice`], which is
/// based around a slice of [`Cell`]s. This is because a userspace can
/// `allow` overlapping sections of memory into different
/// [`WriteableProcessSlice`]. Having at least one mutable Rust slice
/// along with read-only or other mutable slices to overlapping memory
/// in Rust violates Rust's aliasing rules. A slice of [`Cell`]s
/// avoids this issue by explicitly supporting interior
/// mutability. Still, a memory barrier prior to switching to
/// userspace is required, as the compiler is free to reorder reads
/// and writes, even through [`Cell`]s.
pub struct ReadWriteProcessBuffer {
    ptr: *mut u8,
    len: usize,
    process_id: Option<ProcessId>,
}

impl ReadWriteProcessBuffer {
    /// Construct a new [`ReadWriteProcessBuffer`] over a given
    /// pointer and length.
    ///
    /// # Safety requirements
    ///
    /// Refer to the safety requirements of
    /// [`ReadWriteProcessBuffer::new_external`].
    pub(crate) unsafe fn new(ptr: *mut u8, len: usize, process_id: ProcessId) -> Self {
        ReadWriteProcessBuffer {
            ptr,
            len,
            process_id: Some(process_id),
        }
    }

    /// Construct a new [`ReadWriteProcessBuffer`] over a given
    /// pointer and length.
    ///
    /// Publicly accessible constructor, which requires the
    /// [`capabilities::ExternalProcessCapability`] capability. This
    /// is provided to allow implementations of the
    /// [`Process`](crate::process::Process) trait outside of the
    /// `kernel` crate.
    ///
    /// # Safety requirements
    ///
    /// If the length is `0`, an arbitrary pointer may be passed into
    /// `ptr`. It does not necessarily have to point to allocated
    /// memory, nor does it have to meet [Rust's pointer validity
    /// requirements](https://doc.rust-lang.org/core/ptr/index.html#safety).
    /// [`ReadWriteProcessBuffer`] must ensure that all Rust slices
    /// with a length of `0` must be constructed over a valid (but not
    /// necessarily allocated) base pointer.
    ///
    /// If the length is not `0`, the memory region of `[ptr; ptr +
    /// len)` must be valid memory of the process of the given
    /// [`ProcessId`]. It must be allocated and and accessible over
    /// the entire lifetime of the [`ReadWriteProcessBuffer`]. It must
    /// not point to memory outside of the process' accessible memory
    /// range, or point (in part) to other processes or kernel
    /// memory. The `ptr` must meet [Rust's requirements for pointer
    /// validity](https://doc.rust-lang.org/core/ptr/index.html#safety),
    /// in particular it must have a minimum alignment of
    /// `core::mem::align_of::<u8>()` on the respective platform. It
    /// must point to memory mapped as _readable_ and optionally
    /// _writable_ and _executable_.
    pub unsafe fn new_external(
        ptr: *mut u8,
        len: usize,
        process_id: ProcessId,
        _cap: &dyn capabilities::ExternalProcessCapability,
    ) -> Self {
        Self::new(ptr, len, process_id)
    }

    /// Consumes the ReadWriteProcessBuffer, returning its constituent
    /// pointer and size. This ensures that there cannot
    /// simultaneously be both a `ReadWriteProcessBuffer` and a pointer to
    /// its internal data.
    ///
    /// `consume` can be used when the kernel needs to pass the
    /// underlying values across the kernel-to-user boundary (e.g., in
    /// return values to system calls).
    pub(crate) fn consume(self) -> (*mut u8, usize) {
        (self.ptr, self.len)
    }

    /// This is a `const` version of `Default::default` with the same
    /// semantics.
    ///
    /// Having a const initializer allows initializing a fixed-size
    /// array with default values without the struct being marked
    /// `Copy` as such:
    ///
    /// ```
    /// use kernel::processbuffer::ReadWriteProcessBuffer;
    /// const DEFAULT_RWPROCBUF_VAL: ReadWriteProcessBuffer
    ///     = ReadWriteProcessBuffer::const_default();
    /// let my_array = [DEFAULT_RWPROCBUF_VAL; 12];
    /// ```
    pub const fn const_default() -> Self {
        Self {
            ptr: 0x0 as *mut u8,
            len: 0,
            process_id: None,
        }
    }
}

impl ReadableProcessBuffer for ReadWriteProcessBuffer {
    /// Return the length of the buffer in bytes.
    fn len(&self) -> usize {
        self.process_id
            .map_or(0, |pid| pid.kernel.process_map_or(0, pid, |_| self.len))
    }

    /// Return the pointer to the start of the buffer.
    fn ptr(&self) -> *const u8 {
        if self.len == 0 {
            core::ptr::null::<u8>()
        } else {
            self.ptr
        }
    }

    /// Access the contents of the buffer in a closure.
    ///
    /// This verifies the process is still valid before accessing the underlying
    /// memory.
    fn enter<F, R>(&self, fun: F) -> Result<R, process::Error>
    where
        F: FnOnce(&ReadableProcessSlice) -> R,
    {
        match self.process_id {
            None => Err(process::Error::NoSuchApp),
            Some(pid) => pid
                .kernel
                .process_map_or(Err(process::Error::NoSuchApp), pid, |_| {
                    // Safety: `kernel.process_map_or()` validates that
                    // the process still exists and its memory is still
                    // valid. In particular, `Process` tracks the "high water
                    // mark" of memory that the process has `allow`ed to the
                    // kernel. Because `Process` does not feature an API to
                    // move the "high water mark" down again, which would be
                    // called once a `ProcessBuffer` has been passed back into
                    // the kernel, a given `Process` implementation must assume
                    // that the memory described by a once-allowed
                    // `ProcessBuffer` is still in use, and thus will not
                    // permit the process to free any memory after it has
                    // been `allow`ed to the kernel once. This guarantees
                    // that the buffer is safe to convert into a slice
                    // here. For more information, refer to the
                    // comment and subsequent discussion on tock/tock#2632:
                    // https://github.com/tock/tock/pull/2632#issuecomment-869974365
                    Ok(fun(unsafe {
                        raw_processbuf_to_roprocessslice(self.ptr, self.len)
                    }))
                }),
        }
    }
}

impl WriteableProcessBuffer for ReadWriteProcessBuffer {
    fn mut_enter<F, R>(&self, fun: F) -> Result<R, process::Error>
    where
        F: FnOnce(&WriteableProcessSlice) -> R,
    {
        match self.process_id {
            None => Err(process::Error::NoSuchApp),
            Some(pid) => pid
                .kernel
                .process_map_or(Err(process::Error::NoSuchApp), pid, |_| {
                    // Safety: `kernel.process_map_or()` validates that
                    // the process still exists and its memory is still
                    // valid. In particular, `Process` tracks the "high water
                    // mark" of memory that the process has `allow`ed to the
                    // kernel. Because `Process` does not feature an API to
                    // move the "high water mark" down again, which would be
                    // called once a `ProcessBuffer` has been passed back into
                    // the kernel, a given `Process` implementation must assume
                    // that the memory described by a once-allowed
                    // `ProcessBuffer` is still in use, and thus will not
                    // permit the process to free any memory after it has
                    // been `allow`ed to the kernel once. This guarantees
                    // that the buffer is safe to convert into a slice
                    // here. For more information, refer to the
                    // comment and subsequent discussion on tock/tock#2632:
                    // https://github.com/tock/tock/pull/2632#issuecomment-869974365
                    Ok(fun(unsafe {
                        raw_processbuf_to_rwprocessslice(self.ptr, self.len)
                    }))
                }),
        }
    }
}

impl Default for ReadWriteProcessBuffer {
    fn default() -> Self {
        Self::const_default()
    }
}

/// Provides access to a [`ReadWriteProcessBuffer`] with a restricted lifetime.
/// This automatically dereferences into a ReadWriteProcessBuffer
pub struct ReadWriteProcessBufferRef<'a> {
    buf: ReadWriteProcessBuffer,
    _phantom: PhantomData<&'a ()>,
}

impl ReadWriteProcessBufferRef<'_> {
    /// Construct a new [`ReadWriteProcessBufferRef`] over a given pointer and
    /// length with a lifetime derived from the caller.
    ///
    /// # Safety requirements
    ///
    /// Refer to the safety requirements of
    /// [`ReadWriteProcessBuffer::new_external`]. The derived lifetime can
    /// help enforce the invariant that this incoming pointer may only
    /// be access for a certain duration.
    pub(crate) unsafe fn new(ptr: *mut u8, len: usize, process_id: ProcessId) -> Self {
        Self {
            buf: ReadWriteProcessBuffer::new(ptr, len, process_id),
            _phantom: PhantomData,
        }
    }
}

impl Deref for ReadWriteProcessBufferRef<'_> {
    type Target = ReadWriteProcessBuffer;
    fn deref(&self) -> &Self::Target {
        &self.buf
    }
}

/// A shareable region of userspace memory.
///
/// This trait can be used to gain read-write access to memory regions
/// wrapped in a ProcessBuffer type.
// We currently don't need any special functionality in the kernel for this
// type so we alias it as `ReadWriteProcessBuffer`.
pub type UserspaceReadableProcessBuffer = ReadWriteProcessBuffer;

/// Equivalent of the Rust core library's
/// [`SliceIndex`](core::slice::SliceIndex) type for process slices.
///
/// This helper trait is used to abstract over indexing operators into
/// process slices, and is used to "overload" the `.get()` methods
/// such that it can be called with multiple different indexing
/// operators.
///
/// While we can use the core library's `SliceIndex` trait, parameterized over
/// our own `ProcessSlice` types, this trait includes mandatory methods that are
/// undesirable for the process buffer infrastructure, such as unchecked or
/// mutable index operations. Furthermore, implementing it requires the
/// `slice_index_methods` nightly feature. Thus we vendor our own, small variant
/// of this trait.
pub trait ProcessSliceIndex<PB: ?Sized>: private_process_slice_index::Sealed {
    type Output: ?Sized;
    fn get(self, slice: &PB) -> Option<&Self::Output>;
    fn index(self, slice: &PB) -> &Self::Output;
}

// Analog to `private_slice_index` from
// https://github.com/rust-lang/rust/blob/a1eceec00b2684f947481696ae2322e20d59db60/library/core/src/slice/index.rs#L149
mod private_process_slice_index {
    use core::ops::{Range, RangeFrom, RangeTo};

    pub trait Sealed {}

    impl Sealed for usize {}
    impl Sealed for Range<usize> {}
    impl Sealed for RangeFrom<usize> {}
    impl Sealed for RangeTo<usize> {}
}

/// Read-only wrapper around a [`Cell`]
///
/// This type is used in providing the [`ReadableProcessSlice`]. The
/// memory over which a [`ReadableProcessSlice`] exists must never be
/// written to by the kernel. However, it may either exist in flash
/// (read-only memory) or RAM (read-writeable memory). Consequently, a
/// process may `allow` memory overlapping with a
/// [`ReadOnlyProcessBuffer`] also simultaneously through a
/// [`ReadWriteProcessBuffer`]. Hence, the kernel can have two
/// references to the same memory, where one can lead to mutation of
/// the memory contents. Therefore, the kernel must use [`Cell`]s
/// around the bytes shared with userspace, to avoid violating Rust's
/// aliasing rules.
///
/// This read-only wrapper around a [`Cell`] only exposes methods
/// which are safe to call on a process-shared read-only `allow`
/// memory.
#[repr(transparent)]
pub struct ReadableProcessByte {
    cell: Cell<u8>,
}

impl ReadableProcessByte {
    #[inline]
    pub fn get(&self) -> u8 {
        self.cell.get()
    }
}

/// Readable and accessible slice of memory of a process buffer.
///
///
/// The only way to obtain this struct is through a
/// [`ReadWriteProcessBuffer`] or [`ReadOnlyProcessBuffer`].
///
/// Slices provide a more convenient, traditional interface to process
/// memory. These slices are transient, as the underlying buffer must
/// be checked each time a slice is created. This is usually enforced
/// by the anonymous lifetime defined by the creation of the slice.
#[repr(transparent)]
pub struct ReadableProcessSlice {
    slice: [ReadableProcessByte],
}

fn cast_byte_slice_to_process_slice(byte_slice: &[ReadableProcessByte]) -> &ReadableProcessSlice {
    // As ReadableProcessSlice is a transparent wrapper around its inner type,
    // [ReadableProcessByte], we can safely transmute a reference to the inner
    // type as a reference to the outer type with the same lifetime.
    unsafe { core::mem::transmute::<&[ReadableProcessByte], &ReadableProcessSlice>(byte_slice) }
}

// Allow a u8 slice to be viewed as a ReadableProcessSlice to allow client code
// to be authored once and accept either [u8] or ReadableProcessSlice.
impl<'a> From<&'a [u8]> for &'a ReadableProcessSlice {
    fn from(val: &'a [u8]) -> Self {
        // # Safety
        //
        // The layout of a [u8] and ReadableProcessSlice are guaranteed to be
        // the same. This also extends the lifetime of the buffer, so aliasing
        // rules are thus maintained properly.
        unsafe { core::mem::transmute(val) }
    }
}

// Allow a mutable u8 slice to be viewed as a ReadableProcessSlice to allow
// client code to be authored once and accept either [u8] or
// ReadableProcessSlice.
impl<'a> From<&'a mut [u8]> for &'a ReadableProcessSlice {
    fn from(val: &'a mut [u8]) -> Self {
        // # Safety
        //
        // The layout of a [u8] and ReadableProcessSlice are guaranteed to be
        // the same. This also extends the mutable lifetime of the buffer, so
        // aliasing rules are thus maintained properly.
        unsafe { core::mem::transmute(val) }
    }
}

impl ReadableProcessSlice {
    /// Copy the contents of a [`ReadableProcessSlice`] into a mutable
    /// slice reference.
    ///
    /// The length of `self` must be the same as `dest`. Subslicing
    /// can be used to obtain a slice of matching length.
    ///
    /// # Panics
    ///
    /// This function will panic if `self.len() != dest.len()`.
    pub fn copy_to_slice(&self, dest: &mut [u8]) {
        // The panic code path was put into a cold function to not
        // bloat the call site.
        #[inline(never)]
        #[cold]
        #[track_caller]
        fn len_mismatch_fail(dst_len: usize, src_len: usize) -> ! {
            panic!(
                "source slice length ({}) does not match destination slice length ({})",
                src_len, dst_len,
            );
        }

        if self.copy_to_slice_or_err(dest).is_err() {
            len_mismatch_fail(dest.len(), self.len());
        }
    }

    /// Copy the contents of a [`ReadableProcessSlice`] into a mutable
    /// slice reference.
    ///
    /// The length of `self` must be the same as `dest`. Subslicing
    /// can be used to obtain a slice of matching length.
    pub fn copy_to_slice_or_err(&self, dest: &mut [u8]) -> Result<(), ErrorCode> {
        // Method implemetation adopted from the
        // core::slice::copy_from_slice method implementation:
        // https://doc.rust-lang.org/src/core/slice/mod.rs.html#3034-3036

        if self.len() != dest.len() {
            Err(ErrorCode::SIZE)
        } else {
            // _If_ this turns out to not be efficiently optimized, it
            // should be possible to use a ptr::copy_nonoverlapping here
            // given we have exclusive mutable access to the destination
            // slice which will never be in process memory, and the layout
            // of &[ReadableProcessByte] is guaranteed to be compatible to
            // &[u8].
            for (i, b) in self.slice.iter().enumerate() {
                dest[i] = b.get();
            }
            Ok(())
        }
    }

    /// Return the length of the slice in bytes.
    pub fn len(&self) -> usize {
        self.slice.len()
    }

    /// Return an iterator over the bytes of the slice.
    pub fn iter(&self) -> core::slice::Iter<'_, ReadableProcessByte> {
        self.slice.iter()
    }

    /// Iterate the slice in chunks.
    pub fn chunks(
        &self,
        chunk_size: usize,
    ) -> impl core::iter::Iterator<Item = &ReadableProcessSlice> {
        self.slice
            .chunks(chunk_size)
            .map(cast_byte_slice_to_process_slice)
    }

    /// Access a portion of the slice with bounds checking. If the access is not
    /// within the slice then `None` is returned.
    pub fn get<I: ProcessSliceIndex<Self>>(
        &self,
        index: I,
    ) -> Option<&<I as ProcessSliceIndex<Self>>::Output> {
        index.get(self)
    }

    /// Access a portion of the slice with bounds checking. If the access is not
    /// within the slice then `None` is returned.
    #[deprecated = "Use ReadableProcessSlice::get instead"]
    pub fn get_from(&self, range: RangeFrom<usize>) -> Option<&ReadableProcessSlice> {
        range.get(self)
    }

    /// Access a portion of the slice with bounds checking. If the access is not
    /// within the slice then `None` is returned.
    #[deprecated = "Use ReadableProcessSlice::get instead"]
    pub fn get_to(&self, range: RangeTo<usize>) -> Option<&ReadableProcessSlice> {
        range.get(self)
    }
}

impl ProcessSliceIndex<ReadableProcessSlice> for usize {
    type Output = ReadableProcessByte;

    fn get(self, slice: &ReadableProcessSlice) -> Option<&Self::Output> {
        slice.slice.get(self)
    }

    fn index(self, slice: &ReadableProcessSlice) -> &Self::Output {
        &slice.slice[self]
    }
}

impl ProcessSliceIndex<ReadableProcessSlice> for Range<usize> {
    type Output = ReadableProcessSlice;

    fn get(self, slice: &ReadableProcessSlice) -> Option<&Self::Output> {
        slice.slice.get(self).map(cast_byte_slice_to_process_slice)
    }

    fn index(self, slice: &ReadableProcessSlice) -> &Self::Output {
        cast_byte_slice_to_process_slice(&slice.slice[self])
    }
}

impl ProcessSliceIndex<ReadableProcessSlice> for RangeFrom<usize> {
    type Output = ReadableProcessSlice;

    fn get(self, slice: &ReadableProcessSlice) -> Option<&Self::Output> {
        slice.slice.get(self).map(cast_byte_slice_to_process_slice)
    }

    fn index(self, slice: &ReadableProcessSlice) -> &Self::Output {
        cast_byte_slice_to_process_slice(&slice.slice[self])
    }
}

impl ProcessSliceIndex<ReadableProcessSlice> for RangeTo<usize> {
    type Output = ReadableProcessSlice;

    fn get(self, slice: &ReadableProcessSlice) -> Option<&Self::Output> {
        slice.slice.get(self).map(cast_byte_slice_to_process_slice)
    }

    fn index(self, slice: &ReadableProcessSlice) -> &Self::Output {
        cast_byte_slice_to_process_slice(&slice.slice[self])
    }
}

impl<I: ProcessSliceIndex<Self>> Index<I> for ReadableProcessSlice {
    type Output = I::Output;

    fn index(&self, index: I) -> &Self::Output {
        index.index(self)
    }
}

/// Read-writeable and accessible slice of memory of a process buffer
///
/// The only way to obtain this struct is through a
/// [`ReadWriteProcessBuffer`].
///
/// Slices provide a more convenient, traditional interface to process
/// memory. These slices are transient, as the underlying buffer must
/// be checked each time a slice is created. This is usually enforced
/// by the anonymous lifetime defined by the creation of the slice.
#[repr(transparent)]
pub struct WriteableProcessSlice {
    slice: [Cell<u8>],
}

fn cast_cell_slice_to_process_slice(cell_slice: &[Cell<u8>]) -> &WriteableProcessSlice {
    // # Safety
    //
    // As WriteableProcessSlice is a transparent wrapper around its inner type,
    // [Cell<u8>], we can safely transmute a reference to the inner type as the
    // outer type with the same lifetime.
    unsafe { core::mem::transmute(cell_slice) }
}

// Allow a mutable u8 slice to be viewed as a WritableProcessSlice to allow
// client code to be authored once and accept either [u8] or
// WriteableProcessSlice.
impl<'a> From<&'a mut [u8]> for &'a WriteableProcessSlice {
    fn from(val: &'a mut [u8]) -> Self {
        // # Safety
        //
        // The layout of a [u8] and WriteableProcessSlice are guaranteed to be
        // the same. This also extends the mutable lifetime of the buffer, so
        // aliasing rules are thus maintained properly.
        unsafe { core::mem::transmute(val) }
    }
}

impl WriteableProcessSlice {
    /// Copy the contents of a [`WriteableProcessSlice`] into a mutable
    /// slice reference.
    ///
    /// The length of `self` must be the same as `dest`. Subslicing
    /// can be used to obtain a slice of matching length.
    ///
    /// # Panics
    ///
    /// This function will panic if `self.len() != dest.len()`.
    pub fn copy_to_slice(&self, dest: &mut [u8]) {
        // The panic code path was put into a cold function to not
        // bloat the call site.
        #[inline(never)]
        #[cold]
        #[track_caller]
        fn len_mismatch_fail(dst_len: usize, src_len: usize) -> ! {
            panic!(
                "source slice length ({}) does not match destination slice length ({})",
                src_len, dst_len,
            );
        }

        if self.copy_to_slice_or_err(dest).is_err() {
            len_mismatch_fail(dest.len(), self.len());
        }
    }

    /// Copy the contents of a [`WriteableProcessSlice`] into a mutable
    /// slice reference.
    ///
    /// The length of `self` must be the same as `dest`. Subslicing
    /// can be used to obtain a slice of matching length.
    pub fn copy_to_slice_or_err(&self, dest: &mut [u8]) -> Result<(), ErrorCode> {
        // Method implemetation adopted from the
        // core::slice::copy_from_slice method implementation:
        // https://doc.rust-lang.org/src/core/slice/mod.rs.html#3034-3036

        if self.len() != dest.len() {
            Err(ErrorCode::SIZE)
        } else {
            // _If_ this turns out to not be efficiently optimized, it
            // should be possible to use a ptr::copy_nonoverlapping here
            // given we have exclusive mutable access to the destination
            // slice which will never be in process memory, and the layout
            // of &[Cell<u8>] is guaranteed to be compatible to &[u8].
            self.slice
                .iter()
                .zip(dest.iter_mut())
                .for_each(|(src, dst)| *dst = src.get());
            Ok(())
        }
    }

    /// Copy the contents of a slice of bytes into a [`WriteableProcessSlice`].
    ///
    /// The length of `src` must be the same as `self`. Subslicing can
    /// be used to obtain a slice of matching length.
    ///
    /// # Panics
    ///
    /// This function will panic if `src.len() != self.len()`.
    pub fn copy_from_slice(&self, src: &[u8]) {
        // Method implemetation adopted from the
        // core::slice::copy_from_slice method implementation:
        // https://doc.rust-lang.org/src/core/slice/mod.rs.html#3034-3036

        // The panic code path was put into a cold function to not
        // bloat the call site.
        #[inline(never)]
        #[cold]
        #[track_caller]
        fn len_mismatch_fail(dst_len: usize, src_len: usize) -> ! {
            panic!(
                "src slice len ({}) != dest slice len ({})",
                src_len, dst_len,
            );
        }

        if self.copy_from_slice_or_err(src).is_err() {
            len_mismatch_fail(self.len(), src.len());
        }
    }

    /// Copy the contents of a slice of bytes into a [`WriteableProcessSlice`].
    ///
    /// The length of `src` must be the same as `self`. Subslicing can
    /// be used to obtain a slice of matching length.
    pub fn copy_from_slice_or_err(&self, src: &[u8]) -> Result<(), ErrorCode> {
        // Method implemetation adopted from the
        // core::slice::copy_from_slice method implementation:
        // https://doc.rust-lang.org/src/core/slice/mod.rs.html#3034-3036

        if self.len() != src.len() {
            Err(ErrorCode::SIZE)
        } else {
            // _If_ this turns out to not be efficiently optimized, it
            // should be possible to use a ptr::copy_nonoverlapping here
            // given we have exclusive mutable access to the destination
            // slice which will never be in process memory, and the layout
            // of &[Cell<u8>] is guaranteed to be compatible to &[u8].
            src.iter()
                .zip(self.slice.iter())
                .for_each(|(src, dst)| dst.set(*src));
            Ok(())
        }
    }

    /// Return the length of the slice in bytes.
    pub fn len(&self) -> usize {
        self.slice.len()
    }

    /// Return an iterator over the slice.
    pub fn iter(&self) -> core::slice::Iter<'_, Cell<u8>> {
        self.slice.iter()
    }

    /// Iterate over the slice in chunks.
    pub fn chunks(
        &self,
        chunk_size: usize,
    ) -> impl core::iter::Iterator<Item = &WriteableProcessSlice> {
        self.slice
            .chunks(chunk_size)
            .map(cast_cell_slice_to_process_slice)
    }

    /// Access a portion of the slice with bounds checking. If the access is not
    /// within the slice then `None` is returned.
    pub fn get<I: ProcessSliceIndex<Self>>(
        &self,
        index: I,
    ) -> Option<&<I as ProcessSliceIndex<Self>>::Output> {
        index.get(self)
    }

    /// Access a portion of the slice with bounds checking. If the access is not
    /// within the slice then `None` is returned.
    #[deprecated = "Use WriteableProcessSlice::get instead"]
    pub fn get_from(&self, range: RangeFrom<usize>) -> Option<&WriteableProcessSlice> {
        range.get(self)
    }

    /// Access a portion of the slice with bounds checking. If the access is not
    /// within the slice then `None` is returned.
    #[deprecated = "Use WriteableProcessSlice::get instead"]
    pub fn get_to(&self, range: RangeTo<usize>) -> Option<&WriteableProcessSlice> {
        range.get(self)
    }
}

impl ProcessSliceIndex<WriteableProcessSlice> for usize {
    type Output = Cell<u8>;

    fn get(self, slice: &WriteableProcessSlice) -> Option<&Self::Output> {
        slice.slice.get(self)
    }

    fn index(self, slice: &WriteableProcessSlice) -> &Self::Output {
        &slice.slice[self]
    }
}

impl ProcessSliceIndex<WriteableProcessSlice> for Range<usize> {
    type Output = WriteableProcessSlice;

    fn get(self, slice: &WriteableProcessSlice) -> Option<&Self::Output> {
        slice.slice.get(self).map(cast_cell_slice_to_process_slice)
    }

    fn index(self, slice: &WriteableProcessSlice) -> &Self::Output {
        cast_cell_slice_to_process_slice(&slice.slice[self])
    }
}

impl ProcessSliceIndex<WriteableProcessSlice> for RangeFrom<usize> {
    type Output = WriteableProcessSlice;

    fn get(self, slice: &WriteableProcessSlice) -> Option<&Self::Output> {
        slice.slice.get(self).map(cast_cell_slice_to_process_slice)
    }

    fn index(self, slice: &WriteableProcessSlice) -> &Self::Output {
        cast_cell_slice_to_process_slice(&slice.slice[self])
    }
}

impl ProcessSliceIndex<WriteableProcessSlice> for RangeTo<usize> {
    type Output = WriteableProcessSlice;

    fn get(self, slice: &WriteableProcessSlice) -> Option<&Self::Output> {
        slice.slice.get(self).map(cast_cell_slice_to_process_slice)
    }

    fn index(self, slice: &WriteableProcessSlice) -> &Self::Output {
        cast_cell_slice_to_process_slice(&slice.slice[self])
    }
}

impl<I: ProcessSliceIndex<Self>> Index<I> for WriteableProcessSlice {
    type Output = I::Output;

    fn index(&self, index: I) -> &Self::Output {
        index.index(self)
    }
}