kernel/processbuffer.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Data structures for passing application memory to the kernel.
//!
//! A Tock process can pass read-write or read-only buffers into the
//! kernel for it to use. The kernel checks that read-write buffers
//! exist within a process's RAM address space, and that read-only
//! buffers exist either within its RAM or flash address space. These
//! buffers are shared with the allow_read_write() and
//! allow_read_only() system calls.
//!
//! A read-write and read-only call is mapped to the high-level Rust
//! types [`ReadWriteProcessBuffer`] and [`ReadOnlyProcessBuffer`]
//! respectively. The memory regions can be accessed through the
//! [`ReadableProcessBuffer`] and [`WriteableProcessBuffer`] traits,
//! implemented on the process buffer structs.
//!
//! Each access to the buffer structs requires a liveness check to ensure that
//! the process memory is still valid. For a more traditional interface, users
//! can convert buffers into [`ReadableProcessSlice`] or
//! [`WriteableProcessSlice`] and use these for the lifetime of their
//! operations. Users cannot hold live-lived references to these slices,
//! however.
use core::cell::Cell;
use core::marker::PhantomData;
use core::ops::{Deref, Index, Range, RangeFrom, RangeTo};
use crate::capabilities;
use crate::process::{self, ProcessId};
use crate::ErrorCode;
/// Convert a process buffer's internal representation to a
/// [`ReadableProcessSlice`].
///
/// This function will automatically convert zero-length process
/// buffers into valid zero-sized Rust slices regardless of the value
/// of `ptr`.
///
/// # Safety requirements
///
/// In the case of `len != 0`, the memory `[ptr; ptr + len)` must be
/// within a single process' address space, and `ptr` must be
/// nonzero. This memory region must be mapped as _readable_, and
/// optionally _writable_ and _executable_. It must be allocated
/// within a single process' address space for the entire lifetime
/// `'a`.
///
/// It is sound for multiple overlapping [`ReadableProcessSlice`]s or
/// [`WriteableProcessSlice`]s to be in scope at the same time.
unsafe fn raw_processbuf_to_roprocessslice<'a>(
ptr: *const u8,
len: usize,
) -> &'a ReadableProcessSlice {
// Transmute a reference to a slice of Cell<u8>s into a reference
// to a ReadableProcessSlice. This is possible as
// ReadableProcessSlice is a #[repr(transparent)] wrapper around a
// [ReadableProcessByte], which is a #[repr(transparent)] wrapper
// around a [Cell<u8>], which is a #[repr(transparent)] wrapper
// around an [UnsafeCell<u8>], which finally #[repr(transparent)]
// wraps a [u8]
core::mem::transmute::<&[u8], &ReadableProcessSlice>(
// Rust has very strict requirements on pointer validity[1]
// which also in part apply to accesses of length 0. We allow
// an application to supply arbitrary pointers if the buffer
// length is 0, but this is not allowed for Rust slices. For
// instance, a null pointer is _never_ valid, not even for
// accesses of size zero.
//
// To get a pointer which does not point to valid (allocated)
// memory, but is safe to construct for accesses of size zero,
// we must call NonNull::dangling(). The resulting pointer is
// guaranteed to be well-aligned and uphold the guarantees
// required for accesses of size zero.
//
// [1]: https://doc.rust-lang.org/core/ptr/index.html#safety
match len {
0 => core::slice::from_raw_parts(core::ptr::NonNull::<u8>::dangling().as_ptr(), 0),
_ => core::slice::from_raw_parts(ptr, len),
},
)
}
/// Convert an process buffers's internal representation to a
/// [`WriteableProcessSlice`].
///
/// This function will automatically convert zero-length process
/// buffers into valid zero-sized Rust slices regardless of the value
/// of `ptr`.
///
/// # Safety requirements
///
/// In the case of `len != 0`, the memory `[ptr; ptr + len)` must be
/// within a single process' address space, and `ptr` must be
/// nonzero. This memory region must be mapped as _readable_ and
/// _writable_, and optionally _executable_. It must be allocated
/// within a single process' address space for the entire lifetime
/// `'a`.
///
/// No other mutable or immutable Rust reference pointing to an
/// overlapping memory region, which is not also created over
/// `UnsafeCell`, may exist over the entire lifetime `'a`. Even though
/// this effectively returns a slice of [`Cell`]s, writing to some
/// memory through a [`Cell`] while another reference is in scope is
/// unsound. Because a process is free to modify its memory, this is
/// -- in a broader sense -- true for all process memory.
///
/// However, it is sound for multiple overlapping
/// [`ReadableProcessSlice`]s or [`WriteableProcessSlice`]s to be in
/// scope at the same time.
unsafe fn raw_processbuf_to_rwprocessslice<'a>(
ptr: *mut u8,
len: usize,
) -> &'a WriteableProcessSlice {
// Transmute a reference to a slice of Cell<u8>s into a reference
// to a ReadableProcessSlice. This is possible as
// ReadableProcessSlice is a #[repr(transparent)] wrapper around a
// [ReadableProcessByte], which is a #[repr(transparent)] wrapper
// around a [Cell<u8>], which is a #[repr(transparent)] wrapper
// around an [UnsafeCell<u8>], which finally #[repr(transparent)]
// wraps a [u8]
core::mem::transmute::<&[u8], &WriteableProcessSlice>(
// Rust has very strict requirements on pointer validity[1]
// which also in part apply to accesses of length 0. We allow
// an application to supply arbitrary pointers if the buffer
// length is 0, but this is not allowed for Rust slices. For
// instance, a null pointer is _never_ valid, not even for
// accesses of size zero.
//
// To get a pointer which does not point to valid (allocated)
// memory, but is safe to construct for accesses of size zero,
// we must call NonNull::dangling(). The resulting pointer is
// guaranteed to be well-aligned and uphold the guarantees
// required for accesses of size zero.
//
// [1]: https://doc.rust-lang.org/core/ptr/index.html#safety
match len {
0 => core::slice::from_raw_parts_mut(core::ptr::NonNull::<u8>::dangling().as_ptr(), 0),
_ => core::slice::from_raw_parts_mut(ptr, len),
},
)
}
/// A readable region of userspace process memory.
///
/// This trait can be used to gain read-only access to memory regions
/// wrapped in either a [`ReadOnlyProcessBuffer`] or a
/// [`ReadWriteProcessBuffer`] type.
pub trait ReadableProcessBuffer {
/// Length of the memory region.
///
/// If the process is no longer alive and the memory has been
/// reclaimed, this method must return 0.
///
/// # Default Process Buffer
///
/// A default instance of a process buffer must return 0.
fn len(&self) -> usize;
/// Pointer to the first byte of the userspace memory region.
///
/// If the length of the initially shared memory region
/// (irrespective of the return value of
/// [`len`](ReadableProcessBuffer::len)) is 0, this function returns
/// a pointer to address `0x0`. This is because processes may
/// allow buffers with length 0 to share no memory with the
/// kernel. Because these buffers have zero length, they may have
/// any pointer value. However, these _dummy addresses_ should not
/// be leaked, so this method returns 0 for zero-length slices.
///
/// # Default Process Buffer
///
/// A default instance of a process buffer must return a pointer
/// to address `0x0`.
fn ptr(&self) -> *const u8;
/// Applies a function to the (read only) process slice reference
/// pointed to by the process buffer.
///
/// If the process is no longer alive and the memory has been
/// reclaimed, this method must return
/// `Err(process::Error::NoSuchApp)`.
///
/// # Default Process Buffer
///
/// A default instance of a process buffer must return
/// `Err(process::Error::NoSuchApp)` without executing the passed
/// closure.
fn enter<F, R>(&self, fun: F) -> Result<R, process::Error>
where
F: FnOnce(&ReadableProcessSlice) -> R;
}
/// A readable and writeable region of userspace process memory.
///
/// This trait can be used to gain read-write access to memory regions
/// wrapped in a [`ReadWriteProcessBuffer`].
///
/// This is a supertrait of [`ReadableProcessBuffer`], which features
/// methods allowing mutable access.
pub trait WriteableProcessBuffer: ReadableProcessBuffer {
/// Applies a function to the mutable process slice reference
/// pointed to by the [`ReadWriteProcessBuffer`].
///
/// If the process is no longer alive and the memory has been
/// reclaimed, this method must return
/// `Err(process::Error::NoSuchApp)`.
///
/// # Default Process Buffer
///
/// A default instance of a process buffer must return
/// `Err(process::Error::NoSuchApp)` without executing the passed
/// closure.
fn mut_enter<F, R>(&self, fun: F) -> Result<R, process::Error>
where
F: FnOnce(&WriteableProcessSlice) -> R;
}
/// Read-only buffer shared by a userspace process.
///
/// This struct is provided to capsules when a process `allow`s a
/// particular section of its memory to the kernel and gives the
/// kernel read access to this memory.
///
/// It can be used to obtain a [`ReadableProcessSlice`], which is
/// based around a slice of [`Cell`]s. This is because a userspace can
/// `allow` overlapping sections of memory into different
/// [`ReadableProcessSlice`]. Having at least one mutable Rust slice
/// along with read-only slices to overlapping memory in Rust violates
/// Rust's aliasing rules. A slice of [`Cell`]s avoids this issue by
/// explicitly supporting interior mutability. Still, a memory barrier
/// prior to switching to userspace is required, as the compiler is
/// free to reorder reads and writes, even through [`Cell`]s.
pub struct ReadOnlyProcessBuffer {
ptr: *const u8,
len: usize,
process_id: Option<ProcessId>,
}
impl ReadOnlyProcessBuffer {
/// Construct a new [`ReadOnlyProcessBuffer`] over a given pointer and
/// length.
///
/// # Safety requirements
///
/// Refer to the safety requirements of
/// [`ReadOnlyProcessBuffer::new_external`].
pub(crate) unsafe fn new(ptr: *const u8, len: usize, process_id: ProcessId) -> Self {
ReadOnlyProcessBuffer {
ptr,
len,
process_id: Some(process_id),
}
}
/// Construct a new [`ReadOnlyProcessBuffer`] over a given pointer
/// and length.
///
/// Publicly accessible constructor, which requires the
/// [`capabilities::ExternalProcessCapability`] capability. This
/// is provided to allow implementations of the
/// [`Process`](crate::process::Process) trait outside of the
/// `kernel` crate.
///
/// # Safety requirements
///
/// If the length is `0`, an arbitrary pointer may be passed into
/// `ptr`. It does not necessarily have to point to allocated
/// memory, nor does it have to meet [Rust's pointer validity
/// requirements](https://doc.rust-lang.org/core/ptr/index.html#safety).
/// [`ReadOnlyProcessBuffer`] must ensure that all Rust slices
/// with a length of `0` must be constructed over a valid (but not
/// necessarily allocated) base pointer.
///
/// If the length is not `0`, the memory region of `[ptr; ptr +
/// len)` must be valid memory of the process of the given
/// [`ProcessId`]. It must be allocated and and accessible over
/// the entire lifetime of the [`ReadOnlyProcessBuffer`]. It must
/// not point to memory outside of the process' accessible memory
/// range, or point (in part) to other processes or kernel
/// memory. The `ptr` must meet [Rust's requirements for pointer
/// validity](https://doc.rust-lang.org/core/ptr/index.html#safety),
/// in particular it must have a minimum alignment of
/// `core::mem::align_of::<u8>()` on the respective platform. It
/// must point to memory mapped as _readable_ and optionally
/// _writable_ and _executable_.
pub unsafe fn new_external(
ptr: *const u8,
len: usize,
process_id: ProcessId,
_cap: &dyn capabilities::ExternalProcessCapability,
) -> Self {
Self::new(ptr, len, process_id)
}
/// Consumes the ReadOnlyProcessBuffer, returning its constituent
/// pointer and size. This ensures that there cannot
/// simultaneously be both a `ReadOnlyProcessBuffer` and a pointer
/// to its internal data.
///
/// `consume` can be used when the kernel needs to pass the
/// underlying values across the kernel-to-user boundary (e.g., in
/// return values to system calls).
pub(crate) fn consume(self) -> (*const u8, usize) {
(self.ptr, self.len)
}
}
impl ReadableProcessBuffer for ReadOnlyProcessBuffer {
/// Return the length of the buffer in bytes.
fn len(&self) -> usize {
self.process_id
.map_or(0, |pid| pid.kernel.process_map_or(0, pid, |_| self.len))
}
/// Return the pointer to the start of the buffer.
fn ptr(&self) -> *const u8 {
if self.len == 0 {
core::ptr::null::<u8>()
} else {
self.ptr
}
}
/// Access the contents of the buffer in a closure.
///
/// This verifies the process is still valid before accessing the underlying
/// memory.
fn enter<F, R>(&self, fun: F) -> Result<R, process::Error>
where
F: FnOnce(&ReadableProcessSlice) -> R,
{
match self.process_id {
None => Err(process::Error::NoSuchApp),
Some(pid) => pid
.kernel
.process_map_or(Err(process::Error::NoSuchApp), pid, |_| {
// Safety: `kernel.process_map_or()` validates that
// the process still exists and its memory is still
// valid. In particular, `Process` tracks the "high water
// mark" of memory that the process has `allow`ed to the
// kernel. Because `Process` does not feature an API to
// move the "high water mark" down again, which would be
// called once a `ProcessBuffer` has been passed back into
// the kernel, a given `Process` implementation must assume
// that the memory described by a once-allowed
// `ProcessBuffer` is still in use, and thus will not
// permit the process to free any memory after it has
// been `allow`ed to the kernel once. This guarantees
// that the buffer is safe to convert into a slice
// here. For more information, refer to the
// comment and subsequent discussion on tock/tock#2632:
// https://github.com/tock/tock/pull/2632#issuecomment-869974365
Ok(fun(unsafe {
raw_processbuf_to_roprocessslice(self.ptr, self.len)
}))
}),
}
}
}
impl Default for ReadOnlyProcessBuffer {
fn default() -> Self {
ReadOnlyProcessBuffer {
ptr: core::ptr::null_mut::<u8>(),
len: 0,
process_id: None,
}
}
}
/// Provides access to a [`ReadOnlyProcessBuffer`] with a restricted lifetime.
/// This automatically dereferences into a ReadOnlyProcessBuffer
pub struct ReadOnlyProcessBufferRef<'a> {
buf: ReadOnlyProcessBuffer,
_phantom: PhantomData<&'a ()>,
}
impl ReadOnlyProcessBufferRef<'_> {
/// Construct a new [`ReadOnlyProcessBufferRef`] over a given pointer and
/// length with a lifetime derived from the caller.
///
/// # Safety requirements
///
/// Refer to the safety requirements of
/// [`ReadOnlyProcessBuffer::new_external`]. The derived lifetime can
/// help enforce the invariant that this incoming pointer may only
/// be access for a certain duration.
pub(crate) unsafe fn new(ptr: *const u8, len: usize, process_id: ProcessId) -> Self {
Self {
buf: ReadOnlyProcessBuffer::new(ptr, len, process_id),
_phantom: PhantomData,
}
}
}
impl Deref for ReadOnlyProcessBufferRef<'_> {
type Target = ReadOnlyProcessBuffer;
fn deref(&self) -> &Self::Target {
&self.buf
}
}
/// Read-writable buffer shared by a userspace process.
///
/// This struct is provided to capsules when a process `allows` a
/// particular section of its memory to the kernel and gives the
/// kernel read and write access to this memory.
///
/// It can be used to obtain a [`WriteableProcessSlice`], which is
/// based around a slice of [`Cell`]s. This is because a userspace can
/// `allow` overlapping sections of memory into different
/// [`WriteableProcessSlice`]. Having at least one mutable Rust slice
/// along with read-only or other mutable slices to overlapping memory
/// in Rust violates Rust's aliasing rules. A slice of [`Cell`]s
/// avoids this issue by explicitly supporting interior
/// mutability. Still, a memory barrier prior to switching to
/// userspace is required, as the compiler is free to reorder reads
/// and writes, even through [`Cell`]s.
pub struct ReadWriteProcessBuffer {
ptr: *mut u8,
len: usize,
process_id: Option<ProcessId>,
}
impl ReadWriteProcessBuffer {
/// Construct a new [`ReadWriteProcessBuffer`] over a given
/// pointer and length.
///
/// # Safety requirements
///
/// Refer to the safety requirements of
/// [`ReadWriteProcessBuffer::new_external`].
pub(crate) unsafe fn new(ptr: *mut u8, len: usize, process_id: ProcessId) -> Self {
ReadWriteProcessBuffer {
ptr,
len,
process_id: Some(process_id),
}
}
/// Construct a new [`ReadWriteProcessBuffer`] over a given
/// pointer and length.
///
/// Publicly accessible constructor, which requires the
/// [`capabilities::ExternalProcessCapability`] capability. This
/// is provided to allow implementations of the
/// [`Process`](crate::process::Process) trait outside of the
/// `kernel` crate.
///
/// # Safety requirements
///
/// If the length is `0`, an arbitrary pointer may be passed into
/// `ptr`. It does not necessarily have to point to allocated
/// memory, nor does it have to meet [Rust's pointer validity
/// requirements](https://doc.rust-lang.org/core/ptr/index.html#safety).
/// [`ReadWriteProcessBuffer`] must ensure that all Rust slices
/// with a length of `0` must be constructed over a valid (but not
/// necessarily allocated) base pointer.
///
/// If the length is not `0`, the memory region of `[ptr; ptr +
/// len)` must be valid memory of the process of the given
/// [`ProcessId`]. It must be allocated and and accessible over
/// the entire lifetime of the [`ReadWriteProcessBuffer`]. It must
/// not point to memory outside of the process' accessible memory
/// range, or point (in part) to other processes or kernel
/// memory. The `ptr` must meet [Rust's requirements for pointer
/// validity](https://doc.rust-lang.org/core/ptr/index.html#safety),
/// in particular it must have a minimum alignment of
/// `core::mem::align_of::<u8>()` on the respective platform. It
/// must point to memory mapped as _readable_ and optionally
/// _writable_ and _executable_.
pub unsafe fn new_external(
ptr: *mut u8,
len: usize,
process_id: ProcessId,
_cap: &dyn capabilities::ExternalProcessCapability,
) -> Self {
Self::new(ptr, len, process_id)
}
/// Consumes the ReadWriteProcessBuffer, returning its constituent
/// pointer and size. This ensures that there cannot
/// simultaneously be both a `ReadWriteProcessBuffer` and a pointer to
/// its internal data.
///
/// `consume` can be used when the kernel needs to pass the
/// underlying values across the kernel-to-user boundary (e.g., in
/// return values to system calls).
pub(crate) fn consume(self) -> (*mut u8, usize) {
(self.ptr, self.len)
}
/// This is a `const` version of `Default::default` with the same
/// semantics.
///
/// Having a const initializer allows initializing a fixed-size
/// array with default values without the struct being marked
/// `Copy` as such:
///
/// ```
/// use kernel::processbuffer::ReadWriteProcessBuffer;
/// const DEFAULT_RWPROCBUF_VAL: ReadWriteProcessBuffer
/// = ReadWriteProcessBuffer::const_default();
/// let my_array = [DEFAULT_RWPROCBUF_VAL; 12];
/// ```
pub const fn const_default() -> Self {
Self {
ptr: 0x0 as *mut u8,
len: 0,
process_id: None,
}
}
}
impl ReadableProcessBuffer for ReadWriteProcessBuffer {
/// Return the length of the buffer in bytes.
fn len(&self) -> usize {
self.process_id
.map_or(0, |pid| pid.kernel.process_map_or(0, pid, |_| self.len))
}
/// Return the pointer to the start of the buffer.
fn ptr(&self) -> *const u8 {
if self.len == 0 {
core::ptr::null::<u8>()
} else {
self.ptr
}
}
/// Access the contents of the buffer in a closure.
///
/// This verifies the process is still valid before accessing the underlying
/// memory.
fn enter<F, R>(&self, fun: F) -> Result<R, process::Error>
where
F: FnOnce(&ReadableProcessSlice) -> R,
{
match self.process_id {
None => Err(process::Error::NoSuchApp),
Some(pid) => pid
.kernel
.process_map_or(Err(process::Error::NoSuchApp), pid, |_| {
// Safety: `kernel.process_map_or()` validates that
// the process still exists and its memory is still
// valid. In particular, `Process` tracks the "high water
// mark" of memory that the process has `allow`ed to the
// kernel. Because `Process` does not feature an API to
// move the "high water mark" down again, which would be
// called once a `ProcessBuffer` has been passed back into
// the kernel, a given `Process` implementation must assume
// that the memory described by a once-allowed
// `ProcessBuffer` is still in use, and thus will not
// permit the process to free any memory after it has
// been `allow`ed to the kernel once. This guarantees
// that the buffer is safe to convert into a slice
// here. For more information, refer to the
// comment and subsequent discussion on tock/tock#2632:
// https://github.com/tock/tock/pull/2632#issuecomment-869974365
Ok(fun(unsafe {
raw_processbuf_to_roprocessslice(self.ptr, self.len)
}))
}),
}
}
}
impl WriteableProcessBuffer for ReadWriteProcessBuffer {
fn mut_enter<F, R>(&self, fun: F) -> Result<R, process::Error>
where
F: FnOnce(&WriteableProcessSlice) -> R,
{
match self.process_id {
None => Err(process::Error::NoSuchApp),
Some(pid) => pid
.kernel
.process_map_or(Err(process::Error::NoSuchApp), pid, |_| {
// Safety: `kernel.process_map_or()` validates that
// the process still exists and its memory is still
// valid. In particular, `Process` tracks the "high water
// mark" of memory that the process has `allow`ed to the
// kernel. Because `Process` does not feature an API to
// move the "high water mark" down again, which would be
// called once a `ProcessBuffer` has been passed back into
// the kernel, a given `Process` implementation must assume
// that the memory described by a once-allowed
// `ProcessBuffer` is still in use, and thus will not
// permit the process to free any memory after it has
// been `allow`ed to the kernel once. This guarantees
// that the buffer is safe to convert into a slice
// here. For more information, refer to the
// comment and subsequent discussion on tock/tock#2632:
// https://github.com/tock/tock/pull/2632#issuecomment-869974365
Ok(fun(unsafe {
raw_processbuf_to_rwprocessslice(self.ptr, self.len)
}))
}),
}
}
}
impl Default for ReadWriteProcessBuffer {
fn default() -> Self {
Self::const_default()
}
}
/// Provides access to a [`ReadWriteProcessBuffer`] with a restricted lifetime.
/// This automatically dereferences into a ReadWriteProcessBuffer
pub struct ReadWriteProcessBufferRef<'a> {
buf: ReadWriteProcessBuffer,
_phantom: PhantomData<&'a ()>,
}
impl ReadWriteProcessBufferRef<'_> {
/// Construct a new [`ReadWriteProcessBufferRef`] over a given pointer and
/// length with a lifetime derived from the caller.
///
/// # Safety requirements
///
/// Refer to the safety requirements of
/// [`ReadWriteProcessBuffer::new_external`]. The derived lifetime can
/// help enforce the invariant that this incoming pointer may only
/// be access for a certain duration.
pub(crate) unsafe fn new(ptr: *mut u8, len: usize, process_id: ProcessId) -> Self {
Self {
buf: ReadWriteProcessBuffer::new(ptr, len, process_id),
_phantom: PhantomData,
}
}
}
impl Deref for ReadWriteProcessBufferRef<'_> {
type Target = ReadWriteProcessBuffer;
fn deref(&self) -> &Self::Target {
&self.buf
}
}
/// A shareable region of userspace memory.
///
/// This trait can be used to gain read-write access to memory regions
/// wrapped in a ProcessBuffer type.
// We currently don't need any special functionality in the kernel for this
// type so we alias it as `ReadWriteProcessBuffer`.
pub type UserspaceReadableProcessBuffer = ReadWriteProcessBuffer;
/// Equivalent of the Rust core library's
/// [`SliceIndex`](core::slice::SliceIndex) type for process slices.
///
/// This helper trait is used to abstract over indexing operators into
/// process slices, and is used to "overload" the `.get()` methods
/// such that it can be called with multiple different indexing
/// operators.
///
/// While we can use the core library's `SliceIndex` trait, parameterized over
/// our own `ProcessSlice` types, this trait includes mandatory methods that are
/// undesirable for the process buffer infrastructure, such as unchecked or
/// mutable index operations. Furthermore, implementing it requires the
/// `slice_index_methods` nightly feature. Thus we vendor our own, small variant
/// of this trait.
pub trait ProcessSliceIndex<PB: ?Sized>: private_process_slice_index::Sealed {
type Output: ?Sized;
fn get(self, slice: &PB) -> Option<&Self::Output>;
fn index(self, slice: &PB) -> &Self::Output;
}
// Analog to `private_slice_index` from
// https://github.com/rust-lang/rust/blob/a1eceec00b2684f947481696ae2322e20d59db60/library/core/src/slice/index.rs#L149
mod private_process_slice_index {
use core::ops::{Range, RangeFrom, RangeTo};
pub trait Sealed {}
impl Sealed for usize {}
impl Sealed for Range<usize> {}
impl Sealed for RangeFrom<usize> {}
impl Sealed for RangeTo<usize> {}
}
/// Read-only wrapper around a [`Cell`]
///
/// This type is used in providing the [`ReadableProcessSlice`]. The
/// memory over which a [`ReadableProcessSlice`] exists must never be
/// written to by the kernel. However, it may either exist in flash
/// (read-only memory) or RAM (read-writeable memory). Consequently, a
/// process may `allow` memory overlapping with a
/// [`ReadOnlyProcessBuffer`] also simultaneously through a
/// [`ReadWriteProcessBuffer`]. Hence, the kernel can have two
/// references to the same memory, where one can lead to mutation of
/// the memory contents. Therefore, the kernel must use [`Cell`]s
/// around the bytes shared with userspace, to avoid violating Rust's
/// aliasing rules.
///
/// This read-only wrapper around a [`Cell`] only exposes methods
/// which are safe to call on a process-shared read-only `allow`
/// memory.
#[repr(transparent)]
pub struct ReadableProcessByte {
cell: Cell<u8>,
}
impl ReadableProcessByte {
#[inline]
pub fn get(&self) -> u8 {
self.cell.get()
}
}
/// Readable and accessible slice of memory of a process buffer.
///
///
/// The only way to obtain this struct is through a
/// [`ReadWriteProcessBuffer`] or [`ReadOnlyProcessBuffer`].
///
/// Slices provide a more convenient, traditional interface to process
/// memory. These slices are transient, as the underlying buffer must
/// be checked each time a slice is created. This is usually enforced
/// by the anonymous lifetime defined by the creation of the slice.
#[repr(transparent)]
pub struct ReadableProcessSlice {
slice: [ReadableProcessByte],
}
fn cast_byte_slice_to_process_slice(byte_slice: &[ReadableProcessByte]) -> &ReadableProcessSlice {
// As ReadableProcessSlice is a transparent wrapper around its inner type,
// [ReadableProcessByte], we can safely transmute a reference to the inner
// type as a reference to the outer type with the same lifetime.
unsafe { core::mem::transmute::<&[ReadableProcessByte], &ReadableProcessSlice>(byte_slice) }
}
// Allow a u8 slice to be viewed as a ReadableProcessSlice to allow client code
// to be authored once and accept either [u8] or ReadableProcessSlice.
impl<'a> From<&'a [u8]> for &'a ReadableProcessSlice {
fn from(val: &'a [u8]) -> Self {
// # Safety
//
// The layout of a [u8] and ReadableProcessSlice are guaranteed to be
// the same. This also extends the lifetime of the buffer, so aliasing
// rules are thus maintained properly.
unsafe { core::mem::transmute(val) }
}
}
// Allow a mutable u8 slice to be viewed as a ReadableProcessSlice to allow
// client code to be authored once and accept either [u8] or
// ReadableProcessSlice.
impl<'a> From<&'a mut [u8]> for &'a ReadableProcessSlice {
fn from(val: &'a mut [u8]) -> Self {
// # Safety
//
// The layout of a [u8] and ReadableProcessSlice are guaranteed to be
// the same. This also extends the mutable lifetime of the buffer, so
// aliasing rules are thus maintained properly.
unsafe { core::mem::transmute(val) }
}
}
impl ReadableProcessSlice {
/// Copy the contents of a [`ReadableProcessSlice`] into a mutable
/// slice reference.
///
/// The length of `self` must be the same as `dest`. Subslicing
/// can be used to obtain a slice of matching length.
///
/// # Panics
///
/// This function will panic if `self.len() != dest.len()`.
pub fn copy_to_slice(&self, dest: &mut [u8]) {
// The panic code path was put into a cold function to not
// bloat the call site.
#[inline(never)]
#[cold]
#[track_caller]
fn len_mismatch_fail(dst_len: usize, src_len: usize) -> ! {
panic!(
"source slice length ({}) does not match destination slice length ({})",
src_len, dst_len,
);
}
if self.copy_to_slice_or_err(dest).is_err() {
len_mismatch_fail(dest.len(), self.len());
}
}
/// Copy the contents of a [`ReadableProcessSlice`] into a mutable
/// slice reference.
///
/// The length of `self` must be the same as `dest`. Subslicing
/// can be used to obtain a slice of matching length.
pub fn copy_to_slice_or_err(&self, dest: &mut [u8]) -> Result<(), ErrorCode> {
// Method implemetation adopted from the
// core::slice::copy_from_slice method implementation:
// https://doc.rust-lang.org/src/core/slice/mod.rs.html#3034-3036
if self.len() != dest.len() {
Err(ErrorCode::SIZE)
} else {
// _If_ this turns out to not be efficiently optimized, it
// should be possible to use a ptr::copy_nonoverlapping here
// given we have exclusive mutable access to the destination
// slice which will never be in process memory, and the layout
// of &[ReadableProcessByte] is guaranteed to be compatible to
// &[u8].
for (i, b) in self.slice.iter().enumerate() {
dest[i] = b.get();
}
Ok(())
}
}
/// Return the length of the slice in bytes.
pub fn len(&self) -> usize {
self.slice.len()
}
/// Return an iterator over the bytes of the slice.
pub fn iter(&self) -> core::slice::Iter<'_, ReadableProcessByte> {
self.slice.iter()
}
/// Iterate the slice in chunks.
pub fn chunks(
&self,
chunk_size: usize,
) -> impl core::iter::Iterator<Item = &ReadableProcessSlice> {
self.slice
.chunks(chunk_size)
.map(cast_byte_slice_to_process_slice)
}
/// Access a portion of the slice with bounds checking. If the access is not
/// within the slice then `None` is returned.
pub fn get<I: ProcessSliceIndex<Self>>(
&self,
index: I,
) -> Option<&<I as ProcessSliceIndex<Self>>::Output> {
index.get(self)
}
/// Access a portion of the slice with bounds checking. If the access is not
/// within the slice then `None` is returned.
#[deprecated = "Use ReadableProcessSlice::get instead"]
pub fn get_from(&self, range: RangeFrom<usize>) -> Option<&ReadableProcessSlice> {
range.get(self)
}
/// Access a portion of the slice with bounds checking. If the access is not
/// within the slice then `None` is returned.
#[deprecated = "Use ReadableProcessSlice::get instead"]
pub fn get_to(&self, range: RangeTo<usize>) -> Option<&ReadableProcessSlice> {
range.get(self)
}
}
impl ProcessSliceIndex<ReadableProcessSlice> for usize {
type Output = ReadableProcessByte;
fn get(self, slice: &ReadableProcessSlice) -> Option<&Self::Output> {
slice.slice.get(self)
}
fn index(self, slice: &ReadableProcessSlice) -> &Self::Output {
&slice.slice[self]
}
}
impl ProcessSliceIndex<ReadableProcessSlice> for Range<usize> {
type Output = ReadableProcessSlice;
fn get(self, slice: &ReadableProcessSlice) -> Option<&Self::Output> {
slice.slice.get(self).map(cast_byte_slice_to_process_slice)
}
fn index(self, slice: &ReadableProcessSlice) -> &Self::Output {
cast_byte_slice_to_process_slice(&slice.slice[self])
}
}
impl ProcessSliceIndex<ReadableProcessSlice> for RangeFrom<usize> {
type Output = ReadableProcessSlice;
fn get(self, slice: &ReadableProcessSlice) -> Option<&Self::Output> {
slice.slice.get(self).map(cast_byte_slice_to_process_slice)
}
fn index(self, slice: &ReadableProcessSlice) -> &Self::Output {
cast_byte_slice_to_process_slice(&slice.slice[self])
}
}
impl ProcessSliceIndex<ReadableProcessSlice> for RangeTo<usize> {
type Output = ReadableProcessSlice;
fn get(self, slice: &ReadableProcessSlice) -> Option<&Self::Output> {
slice.slice.get(self).map(cast_byte_slice_to_process_slice)
}
fn index(self, slice: &ReadableProcessSlice) -> &Self::Output {
cast_byte_slice_to_process_slice(&slice.slice[self])
}
}
impl<I: ProcessSliceIndex<Self>> Index<I> for ReadableProcessSlice {
type Output = I::Output;
fn index(&self, index: I) -> &Self::Output {
index.index(self)
}
}
/// Read-writeable and accessible slice of memory of a process buffer
///
/// The only way to obtain this struct is through a
/// [`ReadWriteProcessBuffer`].
///
/// Slices provide a more convenient, traditional interface to process
/// memory. These slices are transient, as the underlying buffer must
/// be checked each time a slice is created. This is usually enforced
/// by the anonymous lifetime defined by the creation of the slice.
#[repr(transparent)]
pub struct WriteableProcessSlice {
slice: [Cell<u8>],
}
fn cast_cell_slice_to_process_slice(cell_slice: &[Cell<u8>]) -> &WriteableProcessSlice {
// # Safety
//
// As WriteableProcessSlice is a transparent wrapper around its inner type,
// [Cell<u8>], we can safely transmute a reference to the inner type as the
// outer type with the same lifetime.
unsafe { core::mem::transmute(cell_slice) }
}
// Allow a mutable u8 slice to be viewed as a WritableProcessSlice to allow
// client code to be authored once and accept either [u8] or
// WriteableProcessSlice.
impl<'a> From<&'a mut [u8]> for &'a WriteableProcessSlice {
fn from(val: &'a mut [u8]) -> Self {
// # Safety
//
// The layout of a [u8] and WriteableProcessSlice are guaranteed to be
// the same. This also extends the mutable lifetime of the buffer, so
// aliasing rules are thus maintained properly.
unsafe { core::mem::transmute(val) }
}
}
impl WriteableProcessSlice {
/// Copy the contents of a [`WriteableProcessSlice`] into a mutable
/// slice reference.
///
/// The length of `self` must be the same as `dest`. Subslicing
/// can be used to obtain a slice of matching length.
///
/// # Panics
///
/// This function will panic if `self.len() != dest.len()`.
pub fn copy_to_slice(&self, dest: &mut [u8]) {
// The panic code path was put into a cold function to not
// bloat the call site.
#[inline(never)]
#[cold]
#[track_caller]
fn len_mismatch_fail(dst_len: usize, src_len: usize) -> ! {
panic!(
"source slice length ({}) does not match destination slice length ({})",
src_len, dst_len,
);
}
if self.copy_to_slice_or_err(dest).is_err() {
len_mismatch_fail(dest.len(), self.len());
}
}
/// Copy the contents of a [`WriteableProcessSlice`] into a mutable
/// slice reference.
///
/// The length of `self` must be the same as `dest`. Subslicing
/// can be used to obtain a slice of matching length.
pub fn copy_to_slice_or_err(&self, dest: &mut [u8]) -> Result<(), ErrorCode> {
// Method implemetation adopted from the
// core::slice::copy_from_slice method implementation:
// https://doc.rust-lang.org/src/core/slice/mod.rs.html#3034-3036
if self.len() != dest.len() {
Err(ErrorCode::SIZE)
} else {
// _If_ this turns out to not be efficiently optimized, it
// should be possible to use a ptr::copy_nonoverlapping here
// given we have exclusive mutable access to the destination
// slice which will never be in process memory, and the layout
// of &[Cell<u8>] is guaranteed to be compatible to &[u8].
self.slice
.iter()
.zip(dest.iter_mut())
.for_each(|(src, dst)| *dst = src.get());
Ok(())
}
}
/// Copy the contents of a slice of bytes into a [`WriteableProcessSlice`].
///
/// The length of `src` must be the same as `self`. Subslicing can
/// be used to obtain a slice of matching length.
///
/// # Panics
///
/// This function will panic if `src.len() != self.len()`.
pub fn copy_from_slice(&self, src: &[u8]) {
// Method implemetation adopted from the
// core::slice::copy_from_slice method implementation:
// https://doc.rust-lang.org/src/core/slice/mod.rs.html#3034-3036
// The panic code path was put into a cold function to not
// bloat the call site.
#[inline(never)]
#[cold]
#[track_caller]
fn len_mismatch_fail(dst_len: usize, src_len: usize) -> ! {
panic!(
"src slice len ({}) != dest slice len ({})",
src_len, dst_len,
);
}
if self.copy_from_slice_or_err(src).is_err() {
len_mismatch_fail(self.len(), src.len());
}
}
/// Copy the contents of a slice of bytes into a [`WriteableProcessSlice`].
///
/// The length of `src` must be the same as `self`. Subslicing can
/// be used to obtain a slice of matching length.
pub fn copy_from_slice_or_err(&self, src: &[u8]) -> Result<(), ErrorCode> {
// Method implemetation adopted from the
// core::slice::copy_from_slice method implementation:
// https://doc.rust-lang.org/src/core/slice/mod.rs.html#3034-3036
if self.len() != src.len() {
Err(ErrorCode::SIZE)
} else {
// _If_ this turns out to not be efficiently optimized, it
// should be possible to use a ptr::copy_nonoverlapping here
// given we have exclusive mutable access to the destination
// slice which will never be in process memory, and the layout
// of &[Cell<u8>] is guaranteed to be compatible to &[u8].
src.iter()
.zip(self.slice.iter())
.for_each(|(src, dst)| dst.set(*src));
Ok(())
}
}
/// Return the length of the slice in bytes.
pub fn len(&self) -> usize {
self.slice.len()
}
/// Return an iterator over the slice.
pub fn iter(&self) -> core::slice::Iter<'_, Cell<u8>> {
self.slice.iter()
}
/// Iterate over the slice in chunks.
pub fn chunks(
&self,
chunk_size: usize,
) -> impl core::iter::Iterator<Item = &WriteableProcessSlice> {
self.slice
.chunks(chunk_size)
.map(cast_cell_slice_to_process_slice)
}
/// Access a portion of the slice with bounds checking. If the access is not
/// within the slice then `None` is returned.
pub fn get<I: ProcessSliceIndex<Self>>(
&self,
index: I,
) -> Option<&<I as ProcessSliceIndex<Self>>::Output> {
index.get(self)
}
/// Access a portion of the slice with bounds checking. If the access is not
/// within the slice then `None` is returned.
#[deprecated = "Use WriteableProcessSlice::get instead"]
pub fn get_from(&self, range: RangeFrom<usize>) -> Option<&WriteableProcessSlice> {
range.get(self)
}
/// Access a portion of the slice with bounds checking. If the access is not
/// within the slice then `None` is returned.
#[deprecated = "Use WriteableProcessSlice::get instead"]
pub fn get_to(&self, range: RangeTo<usize>) -> Option<&WriteableProcessSlice> {
range.get(self)
}
}
impl ProcessSliceIndex<WriteableProcessSlice> for usize {
type Output = Cell<u8>;
fn get(self, slice: &WriteableProcessSlice) -> Option<&Self::Output> {
slice.slice.get(self)
}
fn index(self, slice: &WriteableProcessSlice) -> &Self::Output {
&slice.slice[self]
}
}
impl ProcessSliceIndex<WriteableProcessSlice> for Range<usize> {
type Output = WriteableProcessSlice;
fn get(self, slice: &WriteableProcessSlice) -> Option<&Self::Output> {
slice.slice.get(self).map(cast_cell_slice_to_process_slice)
}
fn index(self, slice: &WriteableProcessSlice) -> &Self::Output {
cast_cell_slice_to_process_slice(&slice.slice[self])
}
}
impl ProcessSliceIndex<WriteableProcessSlice> for RangeFrom<usize> {
type Output = WriteableProcessSlice;
fn get(self, slice: &WriteableProcessSlice) -> Option<&Self::Output> {
slice.slice.get(self).map(cast_cell_slice_to_process_slice)
}
fn index(self, slice: &WriteableProcessSlice) -> &Self::Output {
cast_cell_slice_to_process_slice(&slice.slice[self])
}
}
impl ProcessSliceIndex<WriteableProcessSlice> for RangeTo<usize> {
type Output = WriteableProcessSlice;
fn get(self, slice: &WriteableProcessSlice) -> Option<&Self::Output> {
slice.slice.get(self).map(cast_cell_slice_to_process_slice)
}
fn index(self, slice: &WriteableProcessSlice) -> &Self::Output {
cast_cell_slice_to_process_slice(&slice.slice[self])
}
}
impl<I: ProcessSliceIndex<Self>> Index<I> for WriteableProcessSlice {
type Output = I::Output;
fn index(&self, index: I) -> &Self::Output {
index.index(self)
}
}