1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Implementation of the architecture-specific portions of the kernel-userland
//! system call interface.
use core::fmt::Write;
use core::marker::PhantomData;
use core::mem::{self, size_of};
use core::ops::Range;
use core::ptr::{self, addr_of, addr_of_mut, read_volatile, write_volatile};
use kernel::errorcode::ErrorCode;
use crate::CortexMVariant;
/// This is used in the syscall handler. When set to 1 this means the
/// svc_handler was called. Marked `pub` because it is used in the cortex-m*
/// specific handler.
#[no_mangle]
#[used]
pub static mut SYSCALL_FIRED: usize = 0;
/// This is called in the hard fault handler. When set to 1 this means the hard
/// fault handler was called. Marked `pub` because it is used in the cortex-m*
/// specific handler.
///
/// n.b. If the kernel hard faults, it immediately panic's. This flag is only
/// for handling application hard faults.
#[no_mangle]
#[used]
pub static mut APP_HARD_FAULT: usize = 0;
/// This is used in the hardfault handler. When an app faults, the hardfault
/// handler stores the value of the SCB registers in this static array. This
/// makes them available to be displayed in a diagnostic fault message.
#[no_mangle]
#[used]
pub static mut SCB_REGISTERS: [u32; 5] = [0; 5];
// Space for 8 u32s: r0-r3, r12, lr, pc, and xPSR
const SVC_FRAME_SIZE: usize = 32;
/// This holds all of the state that the kernel must keep for the process when
/// the process is not executing.
#[derive(Default)]
pub struct CortexMStoredState {
regs: [usize; 8],
yield_pc: usize,
psr: usize,
psp: usize,
}
/// Values for encoding the stored state buffer in a binary slice.
const VERSION: usize = 1;
const STORED_STATE_SIZE: usize = size_of::<CortexMStoredState>();
const TAG: [u8; 4] = [b'c', b't', b'x', b'm'];
const METADATA_LEN: usize = 3;
const VERSION_IDX: usize = 0;
const SIZE_IDX: usize = 1;
const TAG_IDX: usize = 2;
const YIELDPC_IDX: usize = 3;
const PSR_IDX: usize = 4;
const PSP_IDX: usize = 5;
const REGS_IDX: usize = 6;
const REGS_RANGE: Range<usize> = REGS_IDX..REGS_IDX + 8;
const USIZE_SZ: usize = size_of::<usize>();
fn usize_byte_range(index: usize) -> Range<usize> {
index * USIZE_SZ..(index + 1) * USIZE_SZ
}
fn usize_from_u8_slice(slice: &[u8], index: usize) -> Result<usize, ErrorCode> {
let range = usize_byte_range(index);
Ok(usize::from_le_bytes(
slice
.get(range)
.ok_or(ErrorCode::SIZE)?
.try_into()
.or(Err(ErrorCode::FAIL))?,
))
}
fn write_usize_to_u8_slice(val: usize, slice: &mut [u8], index: usize) {
let range = usize_byte_range(index);
slice[range].copy_from_slice(&val.to_le_bytes());
}
impl core::convert::TryFrom<&[u8]> for CortexMStoredState {
type Error = ErrorCode;
fn try_from(ss: &[u8]) -> Result<CortexMStoredState, Self::Error> {
if ss.len() == size_of::<CortexMStoredState>() + METADATA_LEN * USIZE_SZ
&& usize_from_u8_slice(ss, VERSION_IDX)? == VERSION
&& usize_from_u8_slice(ss, SIZE_IDX)? == STORED_STATE_SIZE
&& usize_from_u8_slice(ss, TAG_IDX)? == u32::from_le_bytes(TAG) as usize
{
let mut res = CortexMStoredState {
regs: [0; 8],
yield_pc: usize_from_u8_slice(ss, YIELDPC_IDX)?,
psr: usize_from_u8_slice(ss, PSR_IDX)?,
psp: usize_from_u8_slice(ss, PSP_IDX)?,
};
for (i, v) in (REGS_RANGE).enumerate() {
res.regs[i] = usize_from_u8_slice(ss, v)?;
}
Ok(res)
} else {
Err(ErrorCode::FAIL)
}
}
}
/// Implementation of the `UserspaceKernelBoundary` for the Cortex-M non-floating point
/// architecture.
pub struct SysCall<A: CortexMVariant>(PhantomData<A>);
impl<A: CortexMVariant> SysCall<A> {
pub const unsafe fn new() -> SysCall<A> {
SysCall(PhantomData)
}
}
impl<A: CortexMVariant> kernel::syscall::UserspaceKernelBoundary for SysCall<A> {
type StoredState = CortexMStoredState;
fn initial_process_app_brk_size(&self) -> usize {
// Cortex-M hardware uses 8 words on the stack to implement context
// switches. So we need at least 32 bytes.
SVC_FRAME_SIZE
}
unsafe fn initialize_process(
&self,
accessible_memory_start: *const u8,
app_brk: *const u8,
state: &mut Self::StoredState,
) -> Result<(), ()> {
// We need to initialize the stored state for the process here. This
// initialization can be called multiple times for a process, for
// example if the process is restarted.
state.regs.iter_mut().for_each(|x| *x = 0);
state.yield_pc = 0;
state.psr = 0x01000000; // Set the Thumb bit and clear everything else.
state.psp = app_brk as usize; // Set to top of process-accessible memory.
// Make sure there's enough room on the stack for the initial SVC frame.
if (app_brk as usize - accessible_memory_start as usize) < SVC_FRAME_SIZE {
// Not enough room on the stack to add a frame.
return Err(());
}
// Allocate the kernel frame
state.psp -= SVC_FRAME_SIZE;
Ok(())
}
unsafe fn set_syscall_return_value(
&self,
accessible_memory_start: *const u8,
app_brk: *const u8,
state: &mut Self::StoredState,
return_value: kernel::syscall::SyscallReturn,
) -> Result<(), ()> {
// For the Cortex-M arch, write the return values in the same
// place that they were originally passed in (i.e. at the
// bottom the SVC structure on the stack)
// First, we need to validate that this location is inside of the
// process's accessible memory. Alignment is guaranteed by hardware.
if state.psp < accessible_memory_start as usize
|| state.psp.saturating_add(mem::size_of::<u32>() * 4) > app_brk as usize
{
return Err(());
}
let sp = state.psp as *mut u32;
let (r0, r1, r2, r3) = (sp.offset(0), sp.offset(1), sp.offset(2), sp.offset(3));
// These operations are only safe so long as
// - the pointers are properly aligned. This is guaranteed because the
// pointers are all offset multiples of 4 bytes from the stack
// pointer, which is guaranteed to be properly aligned after
// exception entry on Cortex-M. See
// https://github.com/tock/tock/pull/2478#issuecomment-796389747
// for more details.
// - the pointer is dereferencable, i.e. the memory range of
// the given size starting at the pointer must all be within
// the bounds of a single allocated object
// - the pointer must point to an initialized instance of its
// type
// - during the lifetime of the returned reference (of the
// cast, essentially an arbitrary 'a), the memory must not
// get accessed (read or written) through any other pointer.
//
// Refer to
// https://doc.rust-lang.org/std/primitive.pointer.html#safety-13
kernel::utilities::arch_helpers::encode_syscall_return_trd104(
&kernel::utilities::arch_helpers::TRD104SyscallReturn::from_syscall_return(
return_value,
),
&mut *r0,
&mut *r1,
&mut *r2,
&mut *r3,
);
Ok(())
}
/// When the process calls `svc` to enter the kernel, the hardware
/// automatically pushes an SVC frame that will be unstacked when the kernel
/// returns to the process. In the special case of process startup,
/// `initialize_new_process` sets up an empty SVC frame as if an `svc` had
/// been called.
///
/// Here, we modify this stack frame such that the process resumes at the
/// beginning of the callback function that we want the process to run. We
/// place the originally intended return address in the link register so
/// that when the function completes execution continues.
///
/// In effect, this converts `svc` into `bl callback`.
unsafe fn set_process_function(
&self,
accessible_memory_start: *const u8,
app_brk: *const u8,
state: &mut CortexMStoredState,
callback: kernel::process::FunctionCall,
) -> Result<(), ()> {
// Ensure that [`state.psp`, `state.psp + SVC_FRAME_SIZE`] is within
// process-accessible memory. Alignment is guaranteed by hardware.
if state.psp < accessible_memory_start as usize
|| state.psp.saturating_add(SVC_FRAME_SIZE) > app_brk as usize
{
return Err(());
}
// Notes:
// - Instruction addresses require `|1` to indicate thumb code
// - Stack offset 4 is R12, which the syscall interface ignores
let stack_bottom = state.psp as *mut usize;
ptr::write(stack_bottom.offset(7), state.psr); //......... -> APSR
ptr::write(stack_bottom.offset(6), callback.pc | 1); //... -> PC
ptr::write(stack_bottom.offset(5), state.yield_pc | 1); // -> LR
ptr::write(stack_bottom.offset(3), callback.argument3); // -> R3
ptr::write(stack_bottom.offset(2), callback.argument2); // -> R2
ptr::write(stack_bottom.offset(1), callback.argument1); // -> R1
ptr::write(stack_bottom.offset(0), callback.argument0); // -> R0
Ok(())
}
unsafe fn switch_to_process(
&self,
accessible_memory_start: *const u8,
app_brk: *const u8,
state: &mut CortexMStoredState,
) -> (kernel::syscall::ContextSwitchReason, Option<*const u8>) {
let new_stack_pointer = A::switch_to_user(state.psp as *const usize, &mut state.regs);
// We need to keep track of the current stack pointer.
state.psp = new_stack_pointer as usize;
// We need to validate that the stack pointer and the SVC frame are
// within process accessible memory. Alignment is guaranteed by
// hardware.
let invalid_stack_pointer = state.psp < accessible_memory_start as usize
|| state.psp.saturating_add(SVC_FRAME_SIZE) > app_brk as usize;
// Determine why this returned and the process switched back to the
// kernel.
// Check to see if the fault handler was called while the process was
// running.
let app_fault = read_volatile(&*addr_of!(APP_HARD_FAULT));
write_volatile(&mut *addr_of_mut!(APP_HARD_FAULT), 0);
// Check to see if the svc_handler was called and the process called a
// syscall.
let syscall_fired = read_volatile(&*addr_of!(SYSCALL_FIRED));
write_volatile(&mut *addr_of_mut!(SYSCALL_FIRED), 0);
// Now decide the reason based on which flags were set.
let switch_reason = if app_fault == 1 || invalid_stack_pointer {
// APP_HARD_FAULT takes priority. This means we hit the hardfault
// handler and this process faulted.
kernel::syscall::ContextSwitchReason::Fault
} else if syscall_fired == 1 {
// Save these fields after a syscall. If this is a synchronous
// syscall (i.e. we return a value to the app immediately) then this
// will have no effect. If we are doing something like `yield()`,
// however, then we need to have this state.
state.yield_pc = ptr::read(new_stack_pointer.offset(6));
state.psr = ptr::read(new_stack_pointer.offset(7));
// Get the syscall arguments and return them along with the syscall.
// It's possible the app did something invalid, in which case we put
// the app in the fault state.
let r0 = ptr::read(new_stack_pointer.offset(0));
let r1 = ptr::read(new_stack_pointer.offset(1));
let r2 = ptr::read(new_stack_pointer.offset(2));
let r3 = ptr::read(new_stack_pointer.offset(3));
// Get the actual SVC number.
let pcptr = ptr::read((new_stack_pointer as *const *const u16).offset(6));
let svc_instr = ptr::read(pcptr.offset(-1));
let svc_num = (svc_instr & 0xff) as u8;
// Use the helper function to convert these raw values into a Tock
// `Syscall` type.
let syscall =
kernel::syscall::Syscall::from_register_arguments(svc_num, r0, r1, r2, r3);
match syscall {
Some(s) => kernel::syscall::ContextSwitchReason::SyscallFired { syscall: s },
None => kernel::syscall::ContextSwitchReason::Fault,
}
} else {
// If none of the above cases are true its because the process was interrupted by an
// ISR for a hardware event
kernel::syscall::ContextSwitchReason::Interrupted
};
(switch_reason, Some(new_stack_pointer as *const u8))
}
unsafe fn print_context(
&self,
accessible_memory_start: *const u8,
app_brk: *const u8,
state: &CortexMStoredState,
writer: &mut dyn Write,
) {
// Check if the stored stack pointer is valid. Alignment is guaranteed
// by hardware.
let invalid_stack_pointer = state.psp < accessible_memory_start as usize
|| state.psp.saturating_add(SVC_FRAME_SIZE) > app_brk as usize;
let stack_pointer = state.psp as *const usize;
// If we cannot use the stack pointer, generate default bad looking
// values we can use for the printout. Otherwise, read the correct
// values.
let (r0, r1, r2, r3, r12, lr, pc, xpsr) = if invalid_stack_pointer {
(
0xBAD00BAD, 0xBAD00BAD, 0xBAD00BAD, 0xBAD00BAD, 0xBAD00BAD, 0xBAD00BAD, 0xBAD00BAD,
0xBAD00BAD,
)
} else {
let r0 = ptr::read(stack_pointer.offset(0));
let r1 = ptr::read(stack_pointer.offset(1));
let r2 = ptr::read(stack_pointer.offset(2));
let r3 = ptr::read(stack_pointer.offset(3));
let r12 = ptr::read(stack_pointer.offset(4));
let lr = ptr::read(stack_pointer.offset(5));
let pc = ptr::read(stack_pointer.offset(6));
let xpsr = ptr::read(stack_pointer.offset(7));
(r0, r1, r2, r3, r12, lr, pc, xpsr)
};
let _ = writer.write_fmt(format_args!(
"\
\r\n R0 : {:#010X} R6 : {:#010X}\
\r\n R1 : {:#010X} R7 : {:#010X}\
\r\n R2 : {:#010X} R8 : {:#010X}\
\r\n R3 : {:#010X} R10: {:#010X}\
\r\n R4 : {:#010X} R11: {:#010X}\
\r\n R5 : {:#010X} R12: {:#010X}\
\r\n R9 : {:#010X} (Static Base Register)\
\r\n SP : {:#010X} (Process Stack Pointer)\
\r\n LR : {:#010X}\
\r\n PC : {:#010X}\
\r\n YPC : {:#010X}\
\r\n",
r0,
state.regs[2],
r1,
state.regs[3],
r2,
state.regs[4],
r3,
state.regs[6],
state.regs[0],
state.regs[7],
state.regs[1],
r12,
state.regs[5],
stack_pointer as usize,
lr,
pc,
state.yield_pc,
));
let _ = writer.write_fmt(format_args!(
"\
\r\n APSR: N {} Z {} C {} V {} Q {}\
\r\n GE {} {} {} {}",
(xpsr >> 31) & 0x1,
(xpsr >> 30) & 0x1,
(xpsr >> 29) & 0x1,
(xpsr >> 28) & 0x1,
(xpsr >> 27) & 0x1,
(xpsr >> 19) & 0x1,
(xpsr >> 18) & 0x1,
(xpsr >> 17) & 0x1,
(xpsr >> 16) & 0x1,
));
let ici_it = (((xpsr >> 25) & 0x3) << 6) | ((xpsr >> 10) & 0x3f);
let thumb_bit = ((xpsr >> 24) & 0x1) == 1;
let _ = writer.write_fmt(format_args!(
"\
\r\n EPSR: ICI.IT {:#04x}\
\r\n ThumbBit {} {}\r\n",
ici_it,
thumb_bit,
if thumb_bit {
""
} else {
"!!ERROR - Cortex M Thumb only!"
},
));
}
fn store_context(
&self,
state: &CortexMStoredState,
out: &mut [u8],
) -> Result<usize, ErrorCode> {
if out.len() >= size_of::<CortexMStoredState>() + 3 * USIZE_SZ {
write_usize_to_u8_slice(VERSION, out, VERSION_IDX);
write_usize_to_u8_slice(STORED_STATE_SIZE, out, SIZE_IDX);
write_usize_to_u8_slice(u32::from_le_bytes(TAG) as usize, out, TAG_IDX);
write_usize_to_u8_slice(state.yield_pc, out, YIELDPC_IDX);
write_usize_to_u8_slice(state.psr, out, PSR_IDX);
write_usize_to_u8_slice(state.psp, out, PSP_IDX);
for (i, v) in state.regs.iter().enumerate() {
write_usize_to_u8_slice(*v, out, REGS_IDX + i);
}
// + 3 for yield_pc, psr, psp
Ok((state.regs.len() + 3 + METADATA_LEN) * USIZE_SZ)
} else {
Err(ErrorCode::SIZE)
}
}
}