1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Communications Class Device for USB
//!
//! This capsule allows Tock to support a serial port over USB.
use core::cell::Cell;
use core::cmp;
use super::descriptors;
use super::descriptors::Buffer64;
use super::descriptors::CdcInterfaceDescriptor;
use super::descriptors::EndpointAddress;
use super::descriptors::EndpointDescriptor;
use super::descriptors::InterfaceDescriptor;
use super::descriptors::TransferDirection;
use super::usbc_client_ctrl::ClientCtrl;
use kernel::deferred_call::{DeferredCall, DeferredCallClient};
use kernel::hil;
use kernel::hil::time::{Alarm, AlarmClient, ConvertTicks};
use kernel::hil::uart;
use kernel::hil::usb::TransferType;
use kernel::utilities::cells::OptionalCell;
use kernel::utilities::cells::TakeCell;
use kernel::utilities::cells::VolatileCell;
use kernel::ErrorCode;
/// Identifying number for the endpoint when transferring data from us to the
/// host.
const ENDPOINT_IN_NUM: usize = 2;
/// Identifying number for the endpoint when transferring data from the host to
/// us.
const ENDPOINT_OUT_NUM: usize = 3;
static LANGUAGES: &[u16; 1] = &[
0x0409, // English (United States)
];
/// Platform-specific packet length for the `SAM4L` USB hardware.
pub const MAX_CTRL_PACKET_SIZE_SAM4L: u8 = 8;
/// Platform-specific packet length for the `nRF52` USB hardware.
pub const MAX_CTRL_PACKET_SIZE_NRF52840: u8 = 64;
/// Platform-specific packet length for the `earlgrey` USB hardware.
pub const MAX_CTRL_PACKET_SIZE_EARLGREY: u8 = 64;
/// Number of ms to buffer uart transmissions before beginning to drop them.
/// This is useful in that it allows users time to connect over CDC without losing message,
/// while still guaranteeing that blocking uart transmissions eventually get a callback even
/// if a debug output is not connected.
pub const CDC_BUFFER_TIMEOUT_MS: u32 = 10000;
const N_ENDPOINTS: usize = 3;
/// States of the CDC driver.
#[derive(Debug, Copy, Clone, PartialEq)]
enum State {
/// Default state. User must call `enable()`.
Disabled,
/// `enable()` has been called. The descriptor format has been passed to the
/// hardware.
Enabled,
/// `attach()` has been called. The hardware should be ready for a host to
/// connect.
Attached,
/// The host has enumerated this USB device. Things should be functional at
/// this point.
Enumerated,
/// We are seeing the CDC messages that we expect to signal that a CDC
/// client has connected. We want to see that both line coding and line
/// state ctrl messages have been received. We stay in the "connecting"
/// state until the USB transfers for both ctrl messages have completed.
Connecting { line_coding: bool, line_state: bool },
/// We have seen the necessary setup messages in the `Connecting` state, now
/// we delay just to ensure the host has enough time to receive _and
/// display_ messages.
ConnectingDelay,
/// A CDC client is connected. We can safely send data.
Connected,
}
/// States of the Control Endpoint related to CDC-ACM.
#[derive(Debug, Copy, Clone, PartialEq)]
enum CtrlState {
/// No ongoing ctrl transcation.
Idle,
/// Host has sent a SET_LINE_CODING configuration request.
SetLineCoding,
/// Host has send a SET_CONTROL_LINE_STATE configuration request.
SetControlLineState,
}
#[derive(PartialEq)]
enum CDCCntrlMessage {
NotSupported,
SetLineCoding = 0x20,
SetControlLineState = 0x22,
SendBreak = 0x23,
}
impl From<u8> for CDCCntrlMessage {
fn from(num: u8) -> Self {
match num {
0x20 => CDCCntrlMessage::SetLineCoding,
0x22 => CDCCntrlMessage::SetControlLineState,
0x23 => CDCCntrlMessage::SendBreak,
_ => CDCCntrlMessage::NotSupported,
}
}
}
/// Implementation of the Abstract Control Model (ACM) for the Communications
/// Class Device (CDC) over USB.
pub struct CdcAcm<'a, U: 'a, A: 'a + Alarm<'a>> {
/// Helper USB client library for handling many USB operations.
client_ctrl: ClientCtrl<'a, 'static, U>,
/// 64 byte buffers for each endpoint.
buffers: [Buffer64; N_ENDPOINTS],
/// Current state of the CDC driver. This helps us track if a CDC client is
/// connected and listening or not.
state: Cell<State>,
/// Current state of the Control Endpoint. This tracks which configuration
/// request the host is currently sending us.
ctrl_state: Cell<CtrlState>,
/// A holder reference for the TX buffer we are transmitting from.
tx_buffer: TakeCell<'static, [u8]>,
/// The number of bytes the client has asked us to send. We track this so we
/// can pass it back to the client when the transmission has finished.
tx_len: Cell<usize>,
/// Where in the `tx_buffer` we need to start sending from when we continue.
tx_offset: Cell<usize>,
/// The TX client to use when transmissions finish.
tx_client: OptionalCell<&'a dyn uart::TransmitClient>,
/// A holder for the buffer to receive bytes into. We use this as a flag as
/// well, if we have a buffer then we are actively doing a receive.
rx_buffer: TakeCell<'static, [u8]>,
/// How many bytes the client wants us to receive.
rx_len: Cell<usize>,
/// How many bytes we have received so far.
rx_offset: Cell<usize>,
/// The RX client to use when RX data is received.
rx_client: OptionalCell<&'a dyn uart::ReceiveClient>,
/// Alarm used to indicate that data should be dropped and callbacks
/// returned.
timeout_alarm: &'a A,
/// Used to track whether we are in the initial boot up period during which
/// messages can be queued despite a CDC host not being connected (which is
/// useful for ensuring debug messages early in the boot process can be
/// delivered over the console).
boot_period: Cell<bool>,
/// Deferred Call
deferred_call: DeferredCall,
/// Flag to mark we are waiting on a deferred call for dropping a TX. This
/// can happen if an upper layer told us to transmit a buffer, but there is
/// no host connected and therefore we cannot actually transmit. However,
/// normal UART semantics are that we can always send (perhaps with a
/// delay), even if nothing is actually listening. To keep the upper layers
/// happy and to allow this CDC layer to just drop messages, we always
/// return Ok(()) for TX, and then use a deferred call to signal the
/// transmit done callback.
deferred_call_pending_droptx: Cell<bool>,
/// Flag to mark we need a deferred call to signal a callback after an RX
/// abort occurs.
deferred_call_pending_abortrx: Cell<bool>,
/// Optional host-initiated function. This function (if supplied) is called
/// when the host sends a special message to the device. The normal signal
/// for calling this function is the host configuring the baud rate to be
/// 1200 baud.
///
/// This was originally added for the bootloader to allow the host to tell
/// the device to enter bootloader mode.
host_initiated_function: Option<&'a (dyn Fn() + 'a)>,
}
impl<'a, U: hil::usb::UsbController<'a>, A: 'a + Alarm<'a>> CdcAcm<'a, U, A> {
pub fn new(
controller: &'a U,
max_ctrl_packet_size: u8,
vendor_id: u16,
product_id: u16,
strings: &'static [&'static str; 3],
timeout_alarm: &'a A,
host_initiated_function: Option<&'a (dyn Fn() + 'a)>,
) -> Self {
let interfaces: &mut [InterfaceDescriptor] = &mut [
InterfaceDescriptor {
interface_number: 0,
interface_class: 0x02, // CDC communication
interface_subclass: 0x02, // abstract control model (ACM)
interface_protocol: 0x01, // V.25ter (AT commands)
..InterfaceDescriptor::default()
},
InterfaceDescriptor {
interface_number: 1,
interface_class: 0x0a, // CDC data
interface_subclass: 0x00, // none
interface_protocol: 0x00, // none
..InterfaceDescriptor::default()
},
];
let cdc_descriptors: &mut [CdcInterfaceDescriptor] = &mut [
CdcInterfaceDescriptor {
subtype: descriptors::CdcInterfaceDescriptorSubType::Header,
field1: 0x10, // CDC
field2: 0x11, // CDC
},
CdcInterfaceDescriptor {
subtype: descriptors::CdcInterfaceDescriptorSubType::CallManagement,
field1: 0x00, // Capabilities
field2: 0x01, // Data interface 1
},
CdcInterfaceDescriptor {
subtype: descriptors::CdcInterfaceDescriptorSubType::AbstractControlManagement,
field1: 0x06, // Capabilities
field2: 0x00, // unused
},
CdcInterfaceDescriptor {
subtype: descriptors::CdcInterfaceDescriptorSubType::Union,
field1: 0x00, // Interface 0
field2: 0x01, // Interface 1
},
];
let endpoints: &[&[EndpointDescriptor]] = &[
&[EndpointDescriptor {
endpoint_address: EndpointAddress::new_const(4, TransferDirection::DeviceToHost),
transfer_type: TransferType::Interrupt,
max_packet_size: 8,
interval: 16,
}],
&[
EndpointDescriptor {
endpoint_address: EndpointAddress::new_const(
2,
TransferDirection::DeviceToHost,
),
transfer_type: TransferType::Bulk,
max_packet_size: 64,
interval: 0,
},
EndpointDescriptor {
endpoint_address: EndpointAddress::new_const(
3,
TransferDirection::HostToDevice,
),
transfer_type: TransferType::Bulk,
max_packet_size: 64,
interval: 0,
},
],
];
let (device_descriptor_buffer, other_descriptor_buffer) =
descriptors::create_descriptor_buffers(
descriptors::DeviceDescriptor {
vendor_id,
product_id,
manufacturer_string: 1,
product_string: 2,
serial_number_string: 3,
class: 0x2, // Class: CDC
max_packet_size_ep0: max_ctrl_packet_size,
..descriptors::DeviceDescriptor::default()
},
descriptors::ConfigurationDescriptor::default(),
interfaces,
endpoints,
None, // No HID descriptor
Some(cdc_descriptors),
);
Self {
client_ctrl: ClientCtrl::new(
controller,
device_descriptor_buffer,
other_descriptor_buffer,
None, // No HID descriptor
None, // No report descriptor
LANGUAGES,
strings,
),
buffers: [
Buffer64::default(),
Buffer64::default(),
Buffer64::default(),
],
state: Cell::new(State::Disabled),
ctrl_state: Cell::new(CtrlState::Idle),
tx_buffer: TakeCell::empty(),
tx_len: Cell::new(0),
tx_offset: Cell::new(0),
tx_client: OptionalCell::empty(),
rx_buffer: TakeCell::empty(),
rx_len: Cell::new(0),
rx_offset: Cell::new(0),
rx_client: OptionalCell::empty(),
timeout_alarm,
boot_period: Cell::new(true),
deferred_call: DeferredCall::new(),
deferred_call_pending_droptx: Cell::new(false),
deferred_call_pending_abortrx: Cell::new(false),
host_initiated_function,
}
}
#[inline]
pub fn controller(&self) -> &'a U {
self.client_ctrl.controller()
}
#[inline]
fn buffer(&'a self, i: usize) -> &'a [VolatileCell<u8>; 64] {
&self.buffers[i - 1].buf
}
/// This is a helper function used to indicate successful uart transmission to
/// a higher layer client despite not actually being connected to a host. Allows
/// blocking debug interfaces to function in the same way they do when an actual UART
/// interface is in use. This should only be called in an upcall.
fn indicate_tx_success(&self) {
self.tx_len.set(0);
self.tx_offset.set(0);
self.tx_client.map(|client| {
self.tx_buffer.take().map(|buf| {
client.transmitted_buffer(buf, 0, Err(ErrorCode::FAIL));
});
});
}
/// Helper function to update the connecting state variable as we progress
/// through various setup steps that indicate a host is actually connecting
/// to our serial port.
///
/// - `line_coding`: if true, set. if false, leave to previous value.
/// - `line_state`: if true, set. if false, leave to previous value.
fn set_connecting_state(&self, line_coding: bool, line_state: bool) {
match self.state.get() {
State::Enumerated => {
self.state.set(State::Connecting {
line_coding,
line_state,
});
}
State::Connecting {
line_coding: old_lc,
line_state: old_ls,
} => {
self.state.set(State::Connecting {
line_coding: if line_coding { true } else { old_lc },
line_state: if line_state { true } else { old_ls },
});
}
_ => {}
}
}
}
impl<'a, U: hil::usb::UsbController<'a>, A: 'a + Alarm<'a>> hil::usb::Client<'a>
for CdcAcm<'a, U, A>
{
fn enable(&'a self) {
// Set up the default control endpoint
self.client_ctrl.enable();
// Setup buffers for IN and OUT data transfer.
self.controller()
.endpoint_set_in_buffer(ENDPOINT_IN_NUM, self.buffer(ENDPOINT_IN_NUM));
self.controller()
.endpoint_in_enable(TransferType::Bulk, ENDPOINT_IN_NUM);
self.controller()
.endpoint_set_out_buffer(ENDPOINT_OUT_NUM, self.buffer(ENDPOINT_OUT_NUM));
self.controller()
.endpoint_out_enable(TransferType::Bulk, ENDPOINT_OUT_NUM);
self.state.set(State::Enabled);
self.timeout_alarm.set_alarm(
self.timeout_alarm.now(),
self.timeout_alarm.ticks_from_ms(CDC_BUFFER_TIMEOUT_MS),
);
}
fn attach(&'a self) {
self.client_ctrl.attach();
self.state.set(State::Attached);
}
fn bus_reset(&'a self) {
// We take a bus reset to mean the enumeration has finished.
self.state.set(State::Enumerated);
}
/// Handle a Control Setup transaction.
///
/// CDC uses special values here, and we can use these to know when a CDC
/// client is connected or not.
fn ctrl_setup(&'a self, endpoint: usize) -> hil::usb::CtrlSetupResult {
descriptors::SetupData::get(&self.client_ctrl.ctrl_buffer.buf).map(|setup_data| {
let b_request = setup_data.request_code;
match CDCCntrlMessage::from(b_request) {
CDCCntrlMessage::SetLineCoding => {
self.ctrl_state.set(CtrlState::SetLineCoding);
}
CDCCntrlMessage::SetControlLineState => {
// Bit 0 and 1 of the value (setup_data.value) can be set
// D0: Indicates to DCE if DTE is present or not.
// - 0 -> Not present
// - 1 -> Present
// D1: Carrier control for half duplex modems.
// - 0 -> Deactivate carrier
// - 1 -> Activate carrier
//
// Currently we don't care about the value, just that this
// event has occurred. If it has happened, update the flag
// in `State::Connecting`.
self.set_connecting_state(false, true);
self.ctrl_state.set(CtrlState::SetControlLineState);
}
CDCCntrlMessage::SendBreak => {
// On Mac, we seem to get the SEND_BREAK to signal that a
// client disconnects.
self.state.set(State::Enumerated)
}
_ => {}
}
});
self.client_ctrl.ctrl_setup(endpoint)
}
/// Handle a Control In transaction
fn ctrl_in(&'a self, endpoint: usize) -> hil::usb::CtrlInResult {
self.client_ctrl.ctrl_in(endpoint)
}
/// Handle a Control Out transaction
fn ctrl_out(&'a self, endpoint: usize, packet_bytes: u32) -> hil::usb::CtrlOutResult {
// Check what state our Ctrl endpoint is in.
match self.ctrl_state.get() {
CtrlState::SetLineCoding => {
// We got a Ctrl SET_LINE_CODING setup, now we are getting the data.
// We can parse the data we got.
descriptors::CdcAcmSetLineCodingData::get(&self.client_ctrl.ctrl_buffer.buf).map(
|line_coding| {
// If the device is configuring the baud rate to what we
// expect, we continue with the connecting process.
if line_coding.baud_rate == 115200 {
self.set_connecting_state(true, false);
}
// Check if the baud rate we got matches the special flag
// value (1200 baud). If so, we run an optional function
// provided when the CDC stack was configured.
if line_coding.baud_rate == 1200 {
self.host_initiated_function.map(|f| {
f();
});
}
},
);
}
_ => {}
}
self.client_ctrl.ctrl_out(endpoint, packet_bytes)
}
fn ctrl_status(&'a self, endpoint: usize) {
self.client_ctrl.ctrl_status(endpoint)
}
/// Handle the completion of a Control transfer
fn ctrl_status_complete(&'a self, endpoint: usize) {
self.ctrl_state.set(CtrlState::Idle);
// Here we check to see if we just got connected to a CDC client. If so,
// we do a delay before transmitting if needed.
match self.state.get() {
State::Connecting {
line_coding,
line_state,
} => {
if line_coding && line_state {
self.state.set(State::ConnectingDelay);
// Wait a 100 ms before sending data.
self.timeout_alarm.set_alarm(
self.timeout_alarm.now(),
self.timeout_alarm.ticks_from_ms(100),
);
}
}
_ => {}
}
self.client_ctrl.ctrl_status_complete(endpoint)
}
/// Handle a Bulk/Interrupt IN transaction.
///
/// This is called when we can send data to the host. It should get called
/// when we tell the controller we want to resume the IN endpoint (meaning
/// we know we have data to send) and afterwards until we return
/// `hil::usb::InResult::Delay` from this function. That means we can use
/// this as a callback to mean that the transmission finished by waiting
/// until this function is called when we don't have anything left to send.
fn packet_in(&'a self, transfer_type: TransferType, endpoint: usize) -> hil::usb::InResult {
match transfer_type {
TransferType::Bulk => {
self.tx_buffer
.take()
.map_or(hil::usb::InResult::Delay, |tx_buf| {
// Check if we have any bytes to send.
let offset = self.tx_offset.get();
let remaining = self.tx_len.get() - offset;
if remaining > 0 {
// We do, so we go ahead and send those.
// Get packet that we have shared with the underlying
// USB stack to copy the tx into.
let packet = self.buffer(endpoint);
// Calculate how much more we can send.
let to_send = cmp::min(packet.len(), remaining);
// Copy from the TX buffer to the outgoing USB packet.
for i in 0..to_send {
packet[i].set(tx_buf[offset + i]);
}
// Update our state on how much more there is to send.
self.tx_offset.set(offset + to_send);
// Put the TX buffer back so we can keep sending from it.
self.tx_buffer.replace(tx_buf);
// Return that we have data to send.
hil::usb::InResult::Packet(to_send)
} else {
// We don't have anything to send, so that means we are
// ok to signal the callback.
// Signal the callback and pass back the TX buffer.
self.tx_client.map(move |tx_client| {
tx_client.transmitted_buffer(tx_buf, self.tx_len.get(), Ok(()))
});
// Return that we have nothing else to do to the USB
// driver.
hil::usb::InResult::Delay
}
})
}
TransferType::Control | TransferType::Isochronous | TransferType::Interrupt => {
// Nothing to do for CDC ACM.
hil::usb::InResult::Delay
}
}
}
/// Handle a Bulk/Interrupt OUT transaction
fn packet_out(
&'a self,
transfer_type: TransferType,
endpoint: usize,
packet_bytes: u32,
) -> hil::usb::OutResult {
match transfer_type {
TransferType::Bulk => {
// Start by checking to see if we even care about this RX or
// not.
self.rx_buffer.take().map(|rx_buf| {
let rx_offset = self.rx_offset.get();
// How many more bytes can we store in our RX buffer?
let available_bytes = rx_buf.len() - rx_offset;
let copy_length = cmp::min(packet_bytes as usize, available_bytes);
// Do the copy into the RX buffer.
let packet = self.buffer(endpoint);
for i in 0..copy_length {
rx_buf[rx_offset + i] = packet[i].get();
}
// Keep track of how many bytes we have received so far.
let total_received_bytes = rx_offset + copy_length;
// Update how many bytes we have gotten.
self.rx_offset.set(total_received_bytes);
// Check if we have received at least as many bytes as the
// client asked for.
if total_received_bytes >= self.rx_len.get() {
self.rx_client.map(move |client| {
client.received_buffer(
rx_buf,
total_received_bytes,
Ok(()),
uart::Error::None,
);
});
} else {
// Make sure to put the RX buffer back.
self.rx_buffer.replace(rx_buf);
}
});
// No error cases to report to the USB.
hil::usb::OutResult::Ok
}
TransferType::Control | TransferType::Isochronous | TransferType::Interrupt => {
// Nothing to do for CDC ACM.
hil::usb::OutResult::Ok
}
}
}
fn packet_transmitted(&'a self, _endpoint: usize) {
// Check if more to send.
self.tx_buffer.take().map(|tx_buf| {
// Check if we have any bytes to send.
let remaining = self.tx_len.get() - self.tx_offset.get();
if remaining > 0 {
// We do, so ask to send again.
self.tx_buffer.replace(tx_buf);
self.controller().endpoint_resume_in(ENDPOINT_IN_NUM);
} else {
// We don't have anything to send, so that means we are
// ok to signal the callback.
// Signal the callback and pass back the TX buffer.
self.tx_client.map(move |tx_client| {
tx_client.transmitted_buffer(tx_buf, self.tx_len.get(), Ok(()))
});
}
});
}
}
impl<'a, U: hil::usb::UsbController<'a>, A: 'a + Alarm<'a>> uart::Configure for CdcAcm<'a, U, A> {
fn configure(&self, _parameters: uart::Parameters) -> Result<(), ErrorCode> {
// Since this is not a real UART, we don't need to consider these
// parameters.
Ok(())
}
}
impl<'a, U: hil::usb::UsbController<'a>, A: 'a + Alarm<'a>> uart::Transmit<'a>
for CdcAcm<'a, U, A>
{
fn set_transmit_client(&self, client: &'a dyn uart::TransmitClient) {
self.tx_client.set(client);
}
fn transmit_buffer(
&self,
tx_buffer: &'static mut [u8],
tx_len: usize,
) -> Result<(), (ErrorCode, &'static mut [u8])> {
if self.tx_buffer.is_some() {
// We are already handling a transmission, we cannot queue another
// request.
Err((ErrorCode::BUSY, tx_buffer))
} else if tx_len > tx_buffer.len() {
// Can't send more bytes than will fit in the buffer.
Err((ErrorCode::SIZE, tx_buffer))
} else {
// Ok, we can handle this transmission. Initialize all of our state
// for our TX state machine.
self.tx_len.set(tx_len);
self.tx_offset.set(0);
self.tx_buffer.replace(tx_buffer);
// Don't try to send if there is no CDC client connected.
if self.state.get() == State::Connected {
// Then signal to the lower layer that we are ready to do a TX
// by putting data in the IN endpoint.
self.controller().endpoint_resume_in(ENDPOINT_IN_NUM);
Ok(())
} else if self.boot_period.get() {
// indicate success because we will try to send it once a host connects
Ok(())
} else {
// indicate success, but we will not actually queue this message -- just schedule
// a deferred callback to return the buffer immediately.
self.deferred_call_pending_droptx.set(true);
self.deferred_call.set();
Ok(())
}
}
}
fn transmit_abort(&self) -> Result<(), ErrorCode> {
Err(ErrorCode::FAIL)
}
fn transmit_word(&self, _word: u32) -> Result<(), ErrorCode> {
Err(ErrorCode::FAIL)
}
}
impl<'a, U: hil::usb::UsbController<'a>, A: 'a + Alarm<'a>> uart::Receive<'a> for CdcAcm<'a, U, A> {
fn set_receive_client(&self, client: &'a dyn uart::ReceiveClient) {
self.rx_client.set(client);
}
fn receive_buffer(
&self,
rx_buffer: &'static mut [u8],
rx_len: usize,
) -> Result<(), (ErrorCode, &'static mut [u8])> {
if self.rx_buffer.is_some() {
Err((ErrorCode::BUSY, rx_buffer))
} else if rx_len > rx_buffer.len() {
Err((ErrorCode::SIZE, rx_buffer))
} else {
self.rx_buffer.replace(rx_buffer);
self.rx_offset.set(0);
self.rx_len.set(rx_len);
Ok(())
}
}
fn receive_abort(&self) -> Result<(), ErrorCode> {
if self.rx_buffer.is_none() {
// If we have nothing pending then aborting is very easy.
Ok(())
} else {
// If we do have a receive pending then we need to start a deferred
// call to set the callback and return `BUSY`.
self.deferred_call_pending_abortrx.set(true);
self.deferred_call.set();
Err(ErrorCode::BUSY)
}
}
fn receive_word(&self) -> Result<(), ErrorCode> {
Err(ErrorCode::FAIL)
}
}
impl<'a, U: hil::usb::UsbController<'a>, A: 'a + Alarm<'a>> AlarmClient for CdcAcm<'a, U, A> {
fn alarm(&self) {
self.boot_period.set(false);
// This alarm is used in two cases. The main is when we first start to
// delay outgoing messages until a host has a chance to connect. The
// second is to delay after a host does connect to help ensure messages
// actually get printed. If this timer goes off, then either no host
// connected, and we want to start dropping messages, or something did
// connect and we just executed the delay.
if self.state.get() == State::ConnectingDelay {
self.state.set(State::Connected);
if self.tx_buffer.is_some() {
self.controller().endpoint_resume_in(ENDPOINT_IN_NUM);
}
} else {
// no client has connected, but we do not want to block indefinitely, so go ahead
// and deliver a callback.
self.indicate_tx_success();
}
}
}
impl<'a, U: hil::usb::UsbController<'a>, A: 'a + Alarm<'a>> DeferredCallClient
for CdcAcm<'a, U, A>
{
fn handle_deferred_call(&self) {
if self.deferred_call_pending_droptx.replace(false) {
self.indicate_tx_success()
}
if self.deferred_call_pending_abortrx.replace(false) {
// Signal the RX callback with CANCEL error.
self.rx_buffer.take().map(|rx_buf| {
let rx_offset = self.rx_offset.get();
// The total number of bytes we have received so far.
let total_received_bytes = rx_offset;
self.rx_client.map(move |client| {
client.received_buffer(
rx_buf,
total_received_bytes,
Err(ErrorCode::CANCEL),
uart::Error::None,
);
});
});
}
}
fn register(&'static self) {
self.deferred_call.register(self);
}
}