1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! SyscallDriver for the Silicon Labs SI7021 temperature/humidity sensor.
//!
//! <https://www.silabs.com/products/sensors/humidity-sensors/Pages/si7013-20-21.aspx>
//!
//! > The Si7006/13/20/21/34 devices are Silicon Labs’ latest generation I2C
//! > relative humidity and temperature sensors. All members of this device
//! > family combine fully factory-calibrated humidity and temperature sensor
//! > elements with an analog to digital converter, signal processing and an I2C
//! > host interface. Patented use of industry-standard low-K polymer
//! > dielectrics provides excellent accuracy and long term stability, along
//! > with low drift and low hysteresis. The innovative CMOS design also offers
//! > the lowest power consumption in the industry for a relative humidity and
//! > temperature sensor. The Si7013/20/21/34 devices are designed for high-
//! > accuracy applications, while the Si7006 is targeted toward lower-accuracy
//! > applications that traditionally have used discrete RH/T sensors.
//!
//! Usage
//! -----
//!
//! ```rust,ignore
//! # use kernel::static_init;
//! # use capsules::virtual_alarm::VirtualMuxAlarm;
//!
//! let si7021_i2c = static_init!(
//! capsules::virtual_i2c::I2CDevice,
//! capsules::virtual_i2c::I2CDevice::new(i2c_bus, 0x40));
//! let si7021_virtual_alarm = static_init!(
//! VirtualMuxAlarm<'static, sam4l::ast::Ast>,
//! VirtualMuxAlarm::new(mux_alarm));
//! si7021_virtual_alarm.setup();
//!
//! let si7021 = static_init!(
//! capsules::si7021::SI7021<'static, VirtualMuxAlarm<'static, sam4l::ast::Ast>>,
//! capsules::si7021::SI7021::new(si7021_i2c,
//! si7021_virtual_alarm,
//! &mut capsules::si7021::BUFFER));
//! si7021_i2c.set_client(si7021);
//! si7021_virtual_alarm.set_client(si7021);
//! ```
use core::cell::Cell;
use kernel::hil::i2c;
use kernel::hil::time::{self, ConvertTicks};
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::ErrorCode;
#[allow(dead_code)]
enum Registers {
MeasRelativeHumidityHoldMode = 0xe5,
MeasRelativeHumidityNoHoldMode = 0xf5,
MeasTemperatureHoldMode = 0xe3,
MeasTemperatureNoHoldMode = 0xf3,
ReadTemperaturePreviousRHMeasurement = 0xe0,
Reset = 0xfe,
WriteRHTUserRegister1 = 0xe6,
ReadRHTUserRegister1 = 0xe7,
WriteHeaterControlRegister = 0x51,
ReadHeaterControlRegister = 0x11,
ReadElectronicIdByteOneA = 0xfa,
ReadElectronicIdByteOneB = 0x0f,
ReadElectronicIdByteTwoA = 0xfc,
ReadElectronicIdByteTwoB = 0xc9,
ReadFirmwareVersionA = 0x84,
ReadFirmwareVersionB = 0xb8,
}
/// States of the I2C protocol with the LPS331AP.
#[derive(Clone, Copy, PartialEq)]
enum State {
Idle,
WaitTemp,
WaitRh,
/// States to read the internal ID
SelectElectronicId1,
ReadElectronicId1,
SelectElectronicId2,
ReadElectronicId2,
/// States to take the current measurement
TakeTempMeasurementInit,
TakeRhMeasurementInit,
ReadRhMeasurement,
ReadTempMeasurement,
GotTempMeasurement,
GotRhMeasurement,
}
#[derive(PartialEq, Eq, Copy, Clone)]
enum OnDeck {
Nothing,
Temperature,
Humidity,
}
pub struct SI7021<'a, A: time::Alarm<'a>, I: i2c::I2CDevice> {
i2c: &'a I,
alarm: &'a A,
temp_callback: OptionalCell<&'a dyn kernel::hil::sensors::TemperatureClient>,
humidity_callback: OptionalCell<&'a dyn kernel::hil::sensors::HumidityClient>,
state: Cell<State>,
on_deck: Cell<OnDeck>,
buffer: TakeCell<'static, [u8]>,
}
impl<'a, A: time::Alarm<'a>, I: i2c::I2CDevice> SI7021<'a, A, I> {
pub fn new(i2c: &'a I, alarm: &'a A, buffer: &'static mut [u8]) -> SI7021<'a, A, I> {
// setup and return struct
SI7021 {
i2c,
alarm,
temp_callback: OptionalCell::empty(),
humidity_callback: OptionalCell::empty(),
state: Cell::new(State::Idle),
on_deck: Cell::new(OnDeck::Nothing),
buffer: TakeCell::new(buffer),
}
}
pub fn read_id(&self) {
self.buffer.take().map(|buffer| {
// turn on i2c to send commands
self.i2c.enable();
buffer[0] = Registers::ReadElectronicIdByteOneA as u8;
buffer[1] = Registers::ReadElectronicIdByteOneB as u8;
// TODO verify errors
let _ = self.i2c.write(buffer, 2);
self.state.set(State::SelectElectronicId1);
});
}
fn init_measurement(&self, buffer: &'static mut [u8]) {
let delay = self.alarm.ticks_from_ms(20);
self.alarm.set_alarm(self.alarm.now(), delay);
// Now wait for timer to expire
self.buffer.replace(buffer);
self.i2c.disable();
}
fn set_idle(&self, buffer: &'static mut [u8]) {
self.buffer.replace(buffer);
self.i2c.disable();
self.state.set(State::Idle);
}
}
impl<'a, A: time::Alarm<'a>, I: i2c::I2CDevice> i2c::I2CClient for SI7021<'a, A, I> {
fn command_complete(&self, buffer: &'static mut [u8], _status: Result<(), i2c::Error>) {
match self.state.get() {
State::SelectElectronicId1 => {
// TODO verify errors
let _ = self.i2c.read(buffer, 8);
self.state.set(State::ReadElectronicId1);
}
State::ReadElectronicId1 => {
buffer[6] = buffer[0];
buffer[7] = buffer[1];
buffer[8] = buffer[2];
buffer[9] = buffer[3];
buffer[10] = buffer[4];
buffer[11] = buffer[5];
buffer[12] = buffer[6];
buffer[13] = buffer[7];
buffer[0] = Registers::ReadElectronicIdByteTwoA as u8;
buffer[1] = Registers::ReadElectronicIdByteTwoB as u8;
// TODO verify errors
let _ = self.i2c.write(buffer, 2);
self.state.set(State::SelectElectronicId2);
}
State::SelectElectronicId2 => {
// TODO verify errors
let _ = self.i2c.read(buffer, 6);
self.state.set(State::ReadElectronicId2);
}
State::ReadElectronicId2 => {
self.set_idle(buffer);
}
State::TakeTempMeasurementInit => {
self.init_measurement(buffer);
self.state.set(State::WaitTemp);
}
State::TakeRhMeasurementInit => {
self.init_measurement(buffer);
self.state.set(State::WaitRh);
}
State::ReadRhMeasurement => {
// TODO verify errors
let _ = self.i2c.read(buffer, 2);
self.state.set(State::GotRhMeasurement);
}
State::ReadTempMeasurement => {
// TODO verify errors
let _ = self.i2c.read(buffer, 2);
self.state.set(State::GotTempMeasurement);
}
State::GotTempMeasurement => {
// Temperature in hundredths of degrees centigrade
let temp_raw = ((buffer[0] as u32) << 8) | (buffer[1] as u32);
let temp = ((temp_raw * 17572) / 65536) as i32 - 4685;
self.temp_callback.map(|cb| cb.callback(Ok(temp)));
match self.on_deck.get() {
OnDeck::Humidity => {
self.on_deck.set(OnDeck::Nothing);
buffer[0] = Registers::MeasRelativeHumidityNoHoldMode as u8;
// TODO verify errors
let _ = self.i2c.write(buffer, 1);
self.state.set(State::TakeRhMeasurementInit);
}
_ => {
self.set_idle(buffer);
}
}
}
State::GotRhMeasurement => {
// Humidity in hundredths of percent
let humidity_raw = ((buffer[0] as u32) << 8) | (buffer[1] as u32);
let humidity = (((humidity_raw * 125 * 100) / 65536) - 600) as u16;
self.humidity_callback
.map(|cb| cb.callback(humidity as usize));
match self.on_deck.get() {
OnDeck::Temperature => {
self.on_deck.set(OnDeck::Nothing);
buffer[0] = Registers::MeasTemperatureNoHoldMode as u8;
// TODO verify errors
let _ = self.i2c.write(buffer, 1);
self.state.set(State::TakeTempMeasurementInit);
}
_ => {
self.set_idle(buffer);
}
}
}
_ => {}
}
}
}
impl<'a, A: time::Alarm<'a>, I: i2c::I2CDevice> kernel::hil::sensors::TemperatureDriver<'a>
for SI7021<'a, A, I>
{
fn read_temperature(&self) -> Result<(), ErrorCode> {
// This chip handles both humidity and temperature measurements. We can
// only start a new measurement if the chip is idle. If it isn't then we
// can put this request "on deck" and it will happen after the
// temperature measurement has finished.
if self.state.get() == State::Idle {
self.buffer.take().map_or(Err(ErrorCode::BUSY), |buffer| {
// turn on i2c to send commands
self.i2c.enable();
buffer[0] = Registers::MeasTemperatureNoHoldMode as u8;
// TODO verify errors
let _ = self.i2c.write(buffer, 1);
self.state.set(State::TakeTempMeasurementInit);
Ok(())
})
} else {
// Queue this request if nothing else queued.
if self.on_deck.get() == OnDeck::Nothing {
self.on_deck.set(OnDeck::Temperature);
Ok(())
} else {
Err(ErrorCode::BUSY)
}
}
}
fn set_client(&self, client: &'a dyn kernel::hil::sensors::TemperatureClient) {
self.temp_callback.set(client);
}
}
impl<'a, A: time::Alarm<'a>, I: i2c::I2CDevice> kernel::hil::sensors::HumidityDriver<'a>
for SI7021<'a, A, I>
{
fn read_humidity(&self) -> Result<(), ErrorCode> {
// This chip handles both humidity and temperature measurements. We can
// only start a new measurement if the chip is idle. If it isn't then we
// can put this request "on deck" and it will happen after the
// temperature measurement has finished.
if self.state.get() == State::Idle {
self.buffer.take().map_or(Err(ErrorCode::BUSY), |buffer| {
// turn on i2c to send commands
self.i2c.enable();
buffer[0] = Registers::MeasRelativeHumidityNoHoldMode as u8;
// TODO verify errors
let _ = self.i2c.write(buffer, 1);
self.state.set(State::TakeRhMeasurementInit);
Ok(())
})
} else {
// Not idle, so queue this request if nothing else is queued. If we have already
// queued a request return an error.
if self.on_deck.get() == OnDeck::Nothing {
self.on_deck.set(OnDeck::Humidity);
Ok(())
} else {
Err(ErrorCode::BUSY)
}
}
}
fn set_client(&self, client: &'a dyn kernel::hil::sensors::HumidityClient) {
self.humidity_callback.set(client);
}
}
impl<'a, A: time::Alarm<'a>, I: i2c::I2CDevice> time::AlarmClient for SI7021<'a, A, I> {
fn alarm(&self) {
self.buffer.take().map(|buffer| {
// turn on i2c to send commands
self.i2c.enable();
// TODO verify errors
let _ = self.i2c.read(buffer, 2);
match self.state.get() {
State::WaitRh => self.state.set(State::ReadRhMeasurement),
State::WaitTemp => self.state.set(State::ReadTempMeasurement),
_ => (),
}
});
}
}