1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! SyscallDriver for sending 802.15.4 packets with an Atmel RF233.
//!
//! This implementation is completely non-blocking. This means that the state
//! machine is somewhat complex, as it must interleave interrupt handling with
//! requests and radio state management. See the SPI `read_write_done` handler
//! for details.
//
// Author: Philip Levis
// Date: Jan 12 2017
//

#![allow(unused_parens)]

use crate::rf233_const::{
    ExternalState, InteruptFlags, RF233BusCommand, RF233Register, RF233TrxCmd,
};
use core::cell::Cell;
use kernel::hil::gpio;
use kernel::hil::radio;
use kernel::hil::spi;
use kernel::utilities::cells::MapCell;
use kernel::utilities::cells::OptionalCell;
use kernel::utilities::leasable_buffer::SubSliceMut;
use kernel::ErrorCode;

use crate::rf233_const::CSMA_SEED_1;
use crate::rf233_const::IRQ_MASK;
use crate::rf233_const::PHY_CC_CCA_MODE_CS_OR_ED;
use crate::rf233_const::PHY_RSSI_RX_CRC_VALID;
use crate::rf233_const::PHY_TX_PWR;
use crate::rf233_const::SHORT_ADDR_0;
use crate::rf233_const::SHORT_ADDR_1;
use crate::rf233_const::TRX_CTRL_1;
use crate::rf233_const::TRX_CTRL_2;
use crate::rf233_const::TRX_RPC;
use crate::rf233_const::TRX_TRAC_CHANNEL_ACCESS_FAILURE;
use crate::rf233_const::TRX_TRAC_MASK;
use crate::rf233_const::XAH_CTRL_0;
use crate::rf233_const::XAH_CTRL_1;

#[allow(non_camel_case_types, dead_code)]
#[derive(Copy, Clone, PartialEq)]
enum InternalState {
    // There are 6 high-level states:
    // START -- the initialization sequence
    // ON    -- turning the radio on to receive
    // READY -- waiting to receive packets
    // RX    -- receiving a packet
    // TX    -- transmitting a packet
    // CONFIG -- reconfiguring the radio
    START,
    START_PART_READ,
    START_STATUS_READ,
    START_TURNING_OFF,
    START_CTRL1_SET,
    START_CCA_SET,
    START_PWR_SET,
    START_CTRL2_SET,
    START_IRQMASK_SET,
    START_XAH1_SET,
    START_XAH0_SET,
    START_PANID0_SET,
    START_PANID1_SET,
    START_IEEE0_SET,
    START_IEEE1_SET,
    START_IEEE2_SET,
    START_IEEE3_SET,
    START_IEEE4_SET,
    START_IEEE5_SET,
    START_IEEE6_SET,
    START_IEEE7_SET,
    START_SHORT0_SET,
    START_SHORT1_SET,
    START_CSMA_0_SEEDED,
    START_CSMA_1_SEEDED,
    START_RPC_SET,

    // Radio is configured, turning it on.
    ON_STATUS_READ,
    ON_PLL_WAITING,
    ON_PLL_SET,

    // Radio is in the RX_AACK_ON state, ready to receive packets.
    READY,

    // States that transition the radio to and from SLEEP
    SLEEP_TRX_OFF,
    SLEEP,
    SLEEP_WAKE,

    // States pertaining to packet transmission.
    // Note that this state machine can be aborted due to
    // an incoming packet; self.transmitting keeps track
    // of whether a transmission is pending.
    TX_STATUS_PRECHECK1,
    TX_WRITING_FRAME,
    TX_WRITING_FRAME_DONE,
    TX_STATUS_PRECHECK2,
    TX_PLL_START,
    TX_PLL_WAIT,
    TX_ARET_ON,
    TX_TRANSMITTING,
    TX_READ_ACK,
    TX_DONE,
    TX_RETURN_TO_RX,

    // This state denotes we began a transmission, but
    // before we could transition to PLL_ON a packet began
    // to be received. When we handle the initial RX interrupt,
    // we'll transition to the correct state. We can't return to READY
    // because we need to block other operations.
    TX_PENDING,

    // Intermediate states when committing configuration from RAM
    // to the chiP; short address, PAN address, tx power and channel
    CONFIG_SHORT0_SET,
    CONFIG_SHORT1_SET,
    CONFIG_PAN0_SET,
    CONFIG_PAN1_SET,
    CONFIG_IEEE0_SET,
    CONFIG_IEEE1_SET,
    CONFIG_IEEE2_SET,
    CONFIG_IEEE3_SET,
    CONFIG_IEEE4_SET,
    CONFIG_IEEE5_SET,
    CONFIG_IEEE6_SET,
    CONFIG_IEEE7_SET,
    CONFIG_POWER_SET,
    CONFIG_DONE,

    // RX is a short-lived state for when software has detected
    // the chip is receiving a packet (by internal state) but has
    // not received the interrupt yet. I.e., the SFD has been
    // received but not the rest of the packet yet.
    RX,
    // The packet has been successfully received
    RX_TURNING_OFF,       // Disabling packet reception
    RX_READY_TO_READ,     // Reception disabled, handle interrupt and start reading
    RX_START_READING,     // Starting to read a packet out of the radio
    RX_READING_FRAME_LEN, // We've read the length of the frame
    RX_READING_FRAME_LEN_DONE,
    RX_READING_FRAME,      // Reading the packet out of the radio
    RX_READING_FRAME_DONE, // Now read a register to verify FCS
    RX_READING_FRAME_FCS_DONE,
    RX_ENABLING_RECEPTION, // Re-enabling reception
}

// There are two tricky parts to this capsule: buffer management
// and the finite state machine.
//
// Buffer management is tricky because the implementation tries to
// minimize the different buffers it uses. It needs to be able to send
// 2-byte register reads and writes on initialization. So it needs 2
// 2-byte buffers for these. When it is transmitting a packet, it
// performs one long write over SPI to move the packet to the radio.
// It needs a read buffer of equal length so it can check the radio
// state.  Similarly, when it reads a packet out of RAM into a buffer,
// it needs an equal length buffer for the SPI write. Finally, it
// needs a buffer to receive packets into, so it doesn't drop a packet
// just because an application didn't read in time. Therefore, the
// structure needs four buffers: 2 2-byte buffers and two
// packet-length buffers.  Since the SPI callback does not distinguish
// which buffers are being used, the read_write_done callback checks
// which state the stack is in and places the buffers back
// accordingly. A bug here would mean a memory leak and later panic
// when a buffer that should be present has been lost.
//
// The finite state machine is tricky for two reasons. First, the
// radio can issue an interrupt at any time, and the stack handles the
// interrupt (clearing it) by reading the IRQ_STATUS
// register. Therefore, when an interrupt occurs, the next SPI
// operation needs to read IRQ_STATUS (and potentially change
// self.state) before returning to the main state
// machine. self.interrupt_pending indicates if an interrupt has fired
// and therefore must be handled by reading IRQ_STATUS and acting
// accordingly. self.interrupt_handling indicates that a read of
// IRQ_STATUS is pending and so the read_write_done should enact state
// transitions based on the interrupt.
//
// Second, it is possible that a packet starts arriving while the
// stack is preparing a transmission. In this case, the transmission
// needs to be aborted, but restarted once the reception
// completes. The stack keeps track of this with self.transmitting.
// The final state before transmission is TX_ARET_ON; the next step is
// to start transmission. If a start-of-frame interrupt is handled at
// any point in the TX state machine, the stack moves to the RX state
// and waits for the interrupt specifying the entire packet has been
// received.

pub const SPI_REGISTER_TRANSACTION_LENGTH: usize = 2;

pub struct RF233<'a, S: spi::SpiMasterDevice<'a>> {
    spi: &'a S,
    radio_on: Cell<bool>,
    transmitting: Cell<bool>,
    receiving: Cell<bool>,
    spi_busy: Cell<bool>,
    crc_valid: Cell<bool>,
    interrupt_handling: Cell<bool>,
    interrupt_pending: Cell<bool>,
    config_pending: Cell<bool>,
    sleep_pending: Cell<bool>,
    wake_pending: Cell<bool>,
    power_client_pending: Cell<bool>,
    reset_pin: &'a dyn gpio::Pin,
    sleep_pin: &'a dyn gpio::Pin,
    irq_pin: &'a dyn gpio::InterruptPin<'a>,
    state: Cell<InternalState>,
    tx_buf: MapCell<SubSliceMut<'static, u8>>,
    rx_buf: MapCell<SubSliceMut<'static, u8>>,
    tx_len: Cell<u8>,
    tx_client: OptionalCell<&'a dyn radio::TxClient>,
    rx_client: OptionalCell<&'a dyn radio::RxClient>,
    cfg_client: OptionalCell<&'a dyn radio::ConfigClient>,
    power_client: OptionalCell<&'a dyn radio::PowerClient>,
    addr: Cell<u16>,
    addr_long: Cell<[u8; 8]>,
    pan: Cell<u16>,
    tx_power: Cell<i8>,
    channel: Cell<radio::RadioChannel>,
    spi_rx: MapCell<SubSliceMut<'static, u8>>,
    spi_tx: MapCell<SubSliceMut<'static, u8>>,
    spi_buf: MapCell<SubSliceMut<'static, u8>>,
}

fn setting_to_power(setting: u8) -> i8 {
    match setting {
        0x00 => 4,
        0x01 => 4,
        0x02 => 3,
        0x03 => 3,
        0x04 => 2,
        0x05 => 2,
        0x06 => 1,
        0x07 => 0,
        0x08 => -1,
        0x09 => -2,
        0x0A => -3,
        0x0B => -4,
        0x0C => -6,
        0x0D => -8,
        0x0E => -12,
        0x0F => -17,
        _ => -127,
    }
}

fn power_to_setting(power: i8) -> u8 {
    if (power >= 4) {
        0x00
    } else if (power >= 3) {
        0x03
    } else if (power >= 2) {
        0x05
    } else if (power >= 1) {
        0x06
    } else if (power >= 0) {
        0x07
    } else if (power >= -1) {
        0x08
    } else if (power >= -2) {
        0x09
    } else if (power >= -3) {
        0x0A
    } else if (power >= -4) {
        0x0B
    } else if (power >= -6) {
        0x0C
    } else if (power >= -8) {
        0x0D
    } else if (power >= -12) {
        0x0E
    } else {
        0x0F
    }
}

fn interrupt_included(mask: u8, interrupt: InteruptFlags) -> bool {
    let int = interrupt as u8;
    (mask & int) == int
}

impl<'a, S: spi::SpiMasterDevice<'a>> spi::SpiMasterClient for RF233<'a, S> {
    // This function is a bit confusing because the order of the logic in the
    // function is different than the order of operations during transmission
    // and reception.
    fn read_write_done(
        &self,
        mut _write: SubSliceMut<'static, u8>,
        mut read: Option<SubSliceMut<'static, u8>>,
        _spi_status: Result<usize, ErrorCode>,
    ) {
        self.spi_busy.set(false);
        let rbuf = read.take().unwrap();
        let status = rbuf[0] & 0x1f;
        let result = rbuf[1];

        // Need to put buffers back. Four cases:
        // 1. a frame read completed, need to put RX buf back and put the
        //    used write buf back into spi_buf
        // 2. a frame length read completed, need to put RX buf back and
        //    put the used write buf back into spi_buf
        // 3. a frame write completed, need to put TX buf back and put the
        //    used read buf back into spi_buf
        // 4. a register op completed, need to but the used read buf back into
        //    spi_rx and the used write buf into spi_tx. interrupt handling
        //    is implicitly a register op.
        // Note that in cases 1-3, we need to enact a state transition
        // so that, if an interrupt is pending, we don't put the buffers
        // back again. The _DONE states denote that the frame transfer
        // has completed. So we'll put the buffers back only once.
        let state = self.state.get();

        let handling = self.interrupt_handling.get();
        if !handling && state == InternalState::RX_READING_FRAME_LEN {
            self.spi_buf.replace(_write);
            self.rx_buf.replace(rbuf);
            self.state.set(InternalState::RX_READING_FRAME_LEN_DONE);
        } else if !handling && state == InternalState::RX_READING_FRAME {
            self.spi_buf.replace(_write);
            self.rx_buf.replace(rbuf);
            self.state.set(InternalState::RX_READING_FRAME_DONE);
        } else if !handling && state == InternalState::TX_WRITING_FRAME {
            self.spi_buf.replace(rbuf);
            self.tx_buf.replace(_write);
            self.state.set(InternalState::TX_WRITING_FRAME_DONE);
        } else {
            self.spi_rx.replace(rbuf);
            self.spi_tx.replace(_write);
        }

        let state = self.state.get();

        // This case is when the SPI operation is reading the IRQ_STATUS
        // register from handling an interrupt. Note that we're done handling
        // the interrupt and continue with the state machine.
        if handling {
            self.interrupt_handling.set(false);

            let interrupt = result;

            // If we're going to sleep, ignore the interrupt and continue
            if state != InternalState::SLEEP_TRX_OFF && state != InternalState::SLEEP {
                if state == InternalState::ON_PLL_WAITING {
                    if interrupt_included(interrupt, InteruptFlags::IRQ_0_PLL_LOCK) {
                        self.state.set(InternalState::ON_PLL_SET);
                    }
                } else if state == InternalState::TX_TRANSMITTING
                    && interrupt_included(interrupt, InteruptFlags::IRQ_3_TRX_END)
                {
                    self.state.set(InternalState::TX_DONE);
                }
                if interrupt_included(interrupt, InteruptFlags::IRQ_2_RX_START) {
                    // Start of frame
                    self.receiving.set(true);
                    self.state.set(InternalState::RX);
                }

                // We've received  an entire frame into the frame buffer. This should be
                // in the InternalState::RX_READY_TO_READ state.
                // There are three cases:
                //   1. we have a receive buffer: copy it out
                //   2. no receive buffer, but transmission pending: send
                //   3. no receive buffer, no transmission: return to waiting
                if (interrupt_included(interrupt, InteruptFlags::IRQ_3_TRX_END)
                    && self.receiving.get())
                {
                    self.receiving.set(false);
                    if self.rx_buf.is_some() {
                        self.state.set(InternalState::RX_START_READING);
                    } else if self.transmitting.get() {
                        self.state_transition_read(
                            RF233Register::MIN,
                            InternalState::TX_STATUS_PRECHECK1,
                        );
                        return;
                    } else {
                        self.state_transition_read(RF233Register::TRX_STATUS, InternalState::READY);
                        return;
                    }
                }
            }
        }

        // No matter what, if the READY state is reached, the radio is on. This
        // needs to occur before handling the interrupt below.
        if self.state.get() == InternalState::READY {
            self.wake_pending.set(false);

            // If we just woke up, note that we need to call the PowerClient
            if !self.radio_on.get() {
                self.power_client_pending.set(true);
            }
            self.radio_on.set(true);
        }

        // An interrupt can only be pending if an interrupt was fired during an
        // SPI operation: we wait for the SPI operation to complete then handle
        // the interrupt by reading the IRQ_STATUS register over the SPI.
        //
        // However, we should not handle the interrupt if we are in the midst of
        // receiving a frame.
        if self.interrupt_pending.get() {
            match self.state.get() {
                InternalState::RX_TURNING_OFF
                | InternalState::RX_START_READING
                | InternalState::RX_READING_FRAME_DONE
                | InternalState::RX_READING_FRAME_FCS_DONE => {}
                _ => {
                    self.interrupt_pending.set(false);
                    self.handle_interrupt();
                    return;
                }
            }
        }
        // Similarly, if a configuration is pending, we only start the
        // configuration process when we are in a state where it is legal to
        // start the configuration process.
        if self.config_pending.get() && self.state.get() == InternalState::READY {
            self.state_transition_write(
                RF233Register::SHORT_ADDR_0,
                (self.addr.get() & 0xff) as u8,
                InternalState::CONFIG_SHORT0_SET,
            );
        }

        match self.state.get() {
            // Default on state; wait for transmit() call or receive interrupt
            InternalState::READY => {
                // If stop() was called, start turning off the radio.
                if self.sleep_pending.get() {
                    self.sleep_pending.set(false);
                    self.radio_on.set(false);
                    self.state_transition_write(
                        RF233Register::TRX_STATE,
                        RF233TrxCmd::OFF as u8,
                        InternalState::SLEEP_TRX_OFF,
                    );
                } else if self.power_client_pending.get() {
                    // fixes bug where client would start transmitting before this state completed
                    self.power_client_pending.set(false);
                    self.power_client.map(|p| {
                        p.changed(self.radio_on.get());
                    });
                }
            }
            // Starting state, begin start sequence.
            InternalState::START => {
                self.state_transition_read(
                    RF233Register::IRQ_STATUS,
                    InternalState::START_PART_READ,
                );
            }
            InternalState::START_PART_READ => {
                self.state_transition_read(
                    RF233Register::TRX_STATUS,
                    InternalState::START_STATUS_READ,
                );
            }
            InternalState::START_STATUS_READ => {
                if status == ExternalState::ON as u8 {
                    self.state_transition_write(
                        RF233Register::TRX_STATE,
                        RF233TrxCmd::OFF as u8,
                        InternalState::START_TURNING_OFF,
                    );
                } else {
                    self.state_transition_write(
                        RF233Register::TRX_CTRL_1,
                        TRX_CTRL_1,
                        InternalState::START_CTRL1_SET,
                    );
                }
            }
            InternalState::START_TURNING_OFF => {
                self.irq_pin.make_input();
                self.irq_pin.clear();
                self.irq_pin
                    .set_floating_state(gpio::FloatingState::PullNone);
                self.irq_pin
                    .enable_interrupts(gpio::InterruptEdge::RisingEdge);

                self.state_transition_write(
                    RF233Register::TRX_CTRL_1,
                    TRX_CTRL_1,
                    InternalState::START_CTRL1_SET,
                );
            }
            InternalState::START_CTRL1_SET => {
                let val = self.channel.get().get_channel_number() | PHY_CC_CCA_MODE_CS_OR_ED;
                self.state_transition_write(
                    RF233Register::PHY_CC_CCA,
                    val,
                    InternalState::START_CCA_SET,
                );
            }
            InternalState::START_CCA_SET => {
                let val = power_to_setting(self.tx_power.get());
                self.state_transition_write(
                    RF233Register::PHY_TX_PWR,
                    val,
                    InternalState::START_PWR_SET,
                );
            }
            InternalState::START_PWR_SET => self.state_transition_write(
                RF233Register::TRX_CTRL_2,
                TRX_CTRL_2,
                InternalState::START_CTRL2_SET,
            ),
            InternalState::START_CTRL2_SET => {
                self.state_transition_write(
                    RF233Register::IRQ_MASK,
                    IRQ_MASK,
                    InternalState::START_IRQMASK_SET,
                );
            }

            InternalState::START_IRQMASK_SET => {
                self.state_transition_write(
                    RF233Register::XAH_CTRL_1,
                    XAH_CTRL_1,
                    InternalState::START_XAH1_SET,
                );
            }

            InternalState::START_XAH1_SET => {
                // This encapsulates the frame retry and CSMA retry
                // settings in the RF233 C code
                self.state_transition_write(
                    RF233Register::XAH_CTRL_0,
                    XAH_CTRL_0,
                    InternalState::START_XAH0_SET,
                );
            }
            InternalState::START_XAH0_SET => {
                self.state_transition_write(
                    RF233Register::PAN_ID_0,
                    (self.pan.get() >> 8) as u8,
                    InternalState::START_PANID0_SET,
                );
            }
            InternalState::START_PANID0_SET => {
                self.state_transition_write(
                    RF233Register::PAN_ID_1,
                    (self.pan.get() & 0xff) as u8,
                    InternalState::START_PANID1_SET,
                );
            }
            InternalState::START_PANID1_SET => {
                self.state_transition_write(
                    RF233Register::IEEE_ADDR_0,
                    self.addr_long.get()[0],
                    InternalState::START_IEEE0_SET,
                );
            }
            InternalState::START_IEEE0_SET => {
                self.state_transition_write(
                    RF233Register::IEEE_ADDR_1,
                    self.addr_long.get()[1],
                    InternalState::START_IEEE1_SET,
                );
            }
            InternalState::START_IEEE1_SET => {
                self.state_transition_write(
                    RF233Register::IEEE_ADDR_2,
                    self.addr_long.get()[2],
                    InternalState::START_IEEE2_SET,
                );
            }
            InternalState::START_IEEE2_SET => {
                self.state_transition_write(
                    RF233Register::IEEE_ADDR_3,
                    self.addr_long.get()[3],
                    InternalState::START_IEEE3_SET,
                );
            }
            InternalState::START_IEEE3_SET => {
                self.state_transition_write(
                    RF233Register::IEEE_ADDR_4,
                    self.addr_long.get()[4],
                    InternalState::START_IEEE4_SET,
                );
            }
            InternalState::START_IEEE4_SET => {
                self.state_transition_write(
                    RF233Register::IEEE_ADDR_5,
                    self.addr_long.get()[5],
                    InternalState::START_IEEE5_SET,
                );
            }
            InternalState::START_IEEE5_SET => {
                self.state_transition_write(
                    RF233Register::IEEE_ADDR_6,
                    self.addr_long.get()[6],
                    InternalState::START_IEEE6_SET,
                );
            }
            InternalState::START_IEEE6_SET => {
                self.state_transition_write(
                    RF233Register::IEEE_ADDR_7,
                    self.addr_long.get()[7],
                    InternalState::START_IEEE7_SET,
                );
            }
            InternalState::START_IEEE7_SET => {
                self.state_transition_write(
                    RF233Register::SHORT_ADDR_0,
                    (self.addr.get() & 0xff) as u8,
                    InternalState::START_SHORT0_SET,
                );
            }
            InternalState::START_SHORT0_SET => {
                self.state_transition_write(
                    RF233Register::SHORT_ADDR_1,
                    (self.addr.get() >> 8) as u8,
                    InternalState::START_SHORT1_SET,
                );
            }
            InternalState::START_SHORT1_SET => {
                self.state_transition_write(
                    RF233Register::CSMA_SEED_0,
                    SHORT_ADDR_0 + SHORT_ADDR_1,
                    InternalState::START_CSMA_0_SEEDED,
                );
            }
            InternalState::START_CSMA_0_SEEDED => {
                self.state_transition_write(
                    RF233Register::CSMA_SEED_1,
                    CSMA_SEED_1,
                    InternalState::START_CSMA_1_SEEDED,
                );
            }
            InternalState::START_CSMA_1_SEEDED => {
                self.state_transition_write(
                    RF233Register::TRX_RPC,
                    TRX_RPC,
                    InternalState::START_RPC_SET,
                );
            }
            InternalState::START_RPC_SET => {
                // If asleep, turn on
                self.state_transition_read(
                    RF233Register::TRX_STATUS,
                    InternalState::ON_STATUS_READ,
                );
            }
            InternalState::ON_STATUS_READ => {
                self.state_transition_write(
                    RF233Register::TRX_STATE,
                    RF233TrxCmd::PLL_ON as u8,
                    InternalState::ON_PLL_WAITING,
                );
            }
            InternalState::ON_PLL_WAITING => {
                // Waiting for the PLL interrupt, do nothing
            }

            // Final startup state, transition to READY and turn radio on.
            InternalState::ON_PLL_SET => {
                // We've completed the SPI operation to read the
                // IRQ_STATUS register, triggered by an interrupt
                // denoting moving to the PLL_ON state, so move
                // to RX_ON (see Sec 7, pg 36 of RF233 datasheet
                self.state_transition_write(
                    RF233Register::TRX_STATE,
                    RF233TrxCmd::RX_AACK_ON as u8,
                    InternalState::READY,
                );
            }
            InternalState::SLEEP_TRX_OFF => {
                // Toggle the sleep pin to put the radio into sleep mode
                self.sleep_pin.set();

                // If start() was called while we were shutting down,
                // immediately start turning the radio back on
                if self.wake_pending.get() {
                    self.state_transition_read(
                        RF233Register::TRX_STATUS,
                        InternalState::SLEEP_WAKE,
                    );
                // Inform power client that the radio turned off successfully
                } else {
                    self.state.set(InternalState::SLEEP);
                    self.power_client.map(|p| {
                        p.changed(self.radio_on.get());
                    });
                    self.irq_pin.disable_interrupts(); // Lets MCU sleep
                }
            }
            // Do nothing; a call to start() is required to restart radio
            InternalState::SLEEP => {}

            InternalState::SLEEP_WAKE => {
                // Toggle the sleep pin to take the radio out of sleep mode into
                // InternalState::TRX_OFF, then transition directly to RX_AACK_ON.
                self.sleep_pin.clear();
                self.irq_pin
                    .enable_interrupts(gpio::InterruptEdge::RisingEdge);
                self.state_transition_write(
                    RF233Register::TRX_STATE,
                    RF233TrxCmd::RX_AACK_ON as u8,
                    InternalState::READY,
                );
            }
            InternalState::TX_STATUS_PRECHECK1 => {
                if (status == ExternalState::BUSY_RX_AACK as u8
                    || status == ExternalState::BUSY_TX_ARET as u8
                    || status == ExternalState::BUSY_RX as u8)
                {
                    self.state.set(InternalState::TX_PENDING);
                } else {
                    // Something wrong here?
                    self.state.set(InternalState::TX_WRITING_FRAME);
                    let wbuf = self.tx_buf.take().unwrap();
                    let _ = self.frame_write(wbuf.take(), self.tx_len.get());
                }
            }
            InternalState::TX_WRITING_FRAME => {} // Should never get here
            InternalState::TX_WRITING_FRAME_DONE => {
                self.state_transition_read(
                    RF233Register::TRX_STATUS,
                    InternalState::TX_STATUS_PRECHECK2,
                );
            }
            InternalState::TX_STATUS_PRECHECK2 => {
                if (status == ExternalState::BUSY_RX_AACK as u8
                    || status == ExternalState::BUSY_TX_ARET as u8
                    || status == ExternalState::BUSY_RX as u8)
                {
                    self.receiving.set(true);
                    self.state.set(InternalState::RX);
                } else {
                    self.state_transition_write(
                        RF233Register::TRX_STATE,
                        RF233TrxCmd::PLL_ON as u8,
                        InternalState::TX_PLL_START,
                    );
                }
            }
            InternalState::TX_PLL_START => {
                self.state_transition_read(RF233Register::TRX_STATUS, InternalState::TX_PLL_WAIT);
            }
            InternalState::TX_PLL_WAIT => {
                self.transmitting.set(true);
                if status == ExternalState::STATE_TRANSITION_IN_PROGRESS as u8 {
                    self.state_transition_read(
                        RF233Register::TRX_STATUS,
                        InternalState::TX_PLL_WAIT,
                    );
                } else if status != ExternalState::PLL_ON as u8 {
                    self.state_transition_write(
                        RF233Register::TRX_STATE,
                        RF233TrxCmd::PLL_ON as u8,
                        InternalState::TX_PLL_WAIT,
                    );
                } else {
                    self.state_transition_write(
                        RF233Register::TRX_STATE,
                        RF233TrxCmd::TX_ARET_ON as u8,
                        InternalState::TX_ARET_ON,
                    );
                }
            }
            InternalState::TX_ARET_ON => {
                self.state_transition_write(
                    RF233Register::TRX_STATE,
                    RF233TrxCmd::TX_START as u8,
                    InternalState::TX_TRANSMITTING,
                );
            }
            InternalState::TX_TRANSMITTING => {
                // Do nothing, wait for TRX_END interrupt denoting transmission
                // completed. The code at the top of this SPI handler for
                // interrupt handling will transition to the TX_DONE state.
            }
            InternalState::TX_DONE => {
                self.state_transition_write(
                    RF233Register::TRX_STATE,
                    RF233TrxCmd::RX_AACK_ON as u8,
                    InternalState::TX_READ_ACK,
                );
            }
            InternalState::TX_READ_ACK => {
                self.state_transition_read(
                    RF233Register::TRX_STATE,
                    InternalState::TX_RETURN_TO_RX,
                );
            }

            // Insert read of TRX_STATUS here, checking TRAC
            InternalState::TX_RETURN_TO_RX => {
                let ack: bool = (result & TRX_TRAC_MASK) == 0;
                if status == ExternalState::RX_AACK_ON as u8 {
                    let return_code = if (result & TRX_TRAC_MASK) == TRX_TRAC_CHANNEL_ACCESS_FAILURE
                    {
                        Err(ErrorCode::FAIL)
                    } else {
                        Ok(())
                    };

                    self.transmitting.set(false);
                    let buf = self.tx_buf.take();
                    self.state_transition_read(RF233Register::TRX_STATUS, InternalState::READY);

                    self.tx_client.map(|c| {
                        c.send_done(buf.unwrap().take(), ack, return_code);
                    });
                } else {
                    let _ = self.register_read(RF233Register::TRX_STATUS);
                }
            }

            // This state occurs when, in the midst of starting a
            // transmission, we discovered that the radio had moved into
            // a receive state. Since this will trigger interrupts,
            // we enter this dead state and just wait for the interrupt
            // handlers.
            InternalState::TX_PENDING => {}

            // No operations in the RX state, an SFD interrupt should
            // take us out of it.
            InternalState::RX => {}
            InternalState::RX_TURNING_OFF => {
                // This is the case when the driver turns off reception in
                // response to receiving a frame, to make sure it is not
                // overwritten. Now we are reading to handle the interrupt and
                // start reading out the frame.
                self.state_transition_read(
                    RF233Register::IRQ_STATUS,
                    InternalState::RX_READY_TO_READ,
                );
                self.interrupt_handling.set(true);
            }
            // This state is when the driver handles the pending TRX_END interrupt
            // on reception, so is handled above in the interrupt logic.
            // the pending interrupt will be handled
            InternalState::RX_READY_TO_READ => {}

            // Read the length out
            InternalState::RX_START_READING => {
                self.state.set(InternalState::RX_READING_FRAME_LEN);
                // A frame read of frame_length 0 results in the received SPI
                // buffer only containing two bytes, the chip status and the
                // frame length.
                let _ = self.frame_read(self.rx_buf.take().unwrap().take(), 0);
            }

            InternalState::RX_READING_FRAME_LEN => {} // Should not get this
            InternalState::RX_READING_FRAME_LEN_DONE => {
                // A frame read starts with a 1-byte chip status followed by a
                // 1-byte PHY header, which is the length of the frame.
                // Then, the frame follows, and there are 3 more bytes at the
                // end corresponding to LQI, ED, and RX_STATUS. Performing a
                // shorter frame read just drops these bytes.
                let frame_len = result;
                // If the packet isn't too long to fit in the SPI buffer, read it
                if (frame_len <= radio::MAX_FRAME_SIZE as u8
                    && frame_len >= radio::MIN_FRAME_SIZE as u8)
                {
                    self.state.set(InternalState::RX_READING_FRAME);
                    let rbuf = self.rx_buf.take().unwrap();
                    let _ = self.frame_read(rbuf.take(), frame_len);
                } else if self.transmitting.get() {
                    // Packet was too long and a transmission is pending,
                    // start the transmission
                    self.state_transition_read(
                        RF233Register::TRX_STATUS,
                        InternalState::TX_STATUS_PRECHECK1,
                    );
                } else {
                    // Packet was too long and no pending transmission,
                    // return to waiting for packets.
                    self.state_transition_read(RF233Register::TRX_STATUS, InternalState::READY);
                }
            }
            InternalState::RX_READING_FRAME => {} // Should never get this state
            InternalState::RX_READING_FRAME_DONE => {
                // Now read the PHY_RSSI register to obtain the RX_CRC_VALID bit
                self.state_transition_read(
                    RF233Register::PHY_RSSI,
                    InternalState::RX_READING_FRAME_FCS_DONE,
                );
            }
            InternalState::RX_READING_FRAME_FCS_DONE => {
                // Store whether the CRC was valid, then turn the radio back on.
                self.crc_valid.set((result & PHY_RSSI_RX_CRC_VALID) != 0);
                self.state_transition_write(
                    RF233Register::TRX_STATE,
                    RF233TrxCmd::RX_AACK_ON as u8,
                    InternalState::RX_ENABLING_RECEPTION,
                );
            }
            InternalState::RX_ENABLING_RECEPTION => {
                self.receiving.set(false);

                // Stay awake if we receive a packet, another call to stop()
                // is therefore necessary to shut down the radio. Currently
                // mainly benefits the XMAC wrapper that would like to avoid
                // a shutdown when in the expected case the radio should stay
                // awake.
                self.sleep_pending.set(false);

                // Just read a packet: if a transmission is pending,
                // start the transmission state machine
                if self.transmitting.get() {
                    self.state_transition_read(
                        RF233Register::TRX_STATUS,
                        InternalState::TX_STATUS_PRECHECK1,
                    );
                } else {
                    self.state_transition_read(RF233Register::TRX_STATUS, InternalState::READY);
                }
                self.rx_client.map(|client| {
                    let rbuf = self.rx_buf.take().unwrap();
                    let frame_len = rbuf[1] as usize - radio::MFR_SIZE;

                    // lqi is currently unimplemented for rf233 and is subsequently hardcoded to zero
                    client.receive(rbuf.take(), frame_len, 0, self.crc_valid.get(), Ok(()));
                });
            }

            InternalState::CONFIG_SHORT0_SET => {
                self.state_transition_write(
                    RF233Register::SHORT_ADDR_1,
                    (self.addr.get() >> 8) as u8,
                    InternalState::CONFIG_SHORT1_SET,
                );
            }
            InternalState::CONFIG_SHORT1_SET => {
                self.state_transition_write(
                    RF233Register::PAN_ID_0,
                    (self.pan.get() & 0xff) as u8,
                    InternalState::CONFIG_PAN0_SET,
                );
            }
            InternalState::CONFIG_PAN0_SET => {
                self.state_transition_write(
                    RF233Register::PAN_ID_1,
                    (self.pan.get() >> 8) as u8,
                    InternalState::CONFIG_PAN1_SET,
                );
            }
            InternalState::CONFIG_PAN1_SET => {
                self.state_transition_write(
                    RF233Register::IEEE_ADDR_0,
                    self.addr_long.get()[0],
                    InternalState::CONFIG_IEEE0_SET,
                );
            }
            InternalState::CONFIG_IEEE0_SET => {
                self.state_transition_write(
                    RF233Register::IEEE_ADDR_1,
                    self.addr_long.get()[1],
                    InternalState::CONFIG_IEEE1_SET,
                );
            }
            InternalState::CONFIG_IEEE1_SET => {
                self.state_transition_write(
                    RF233Register::IEEE_ADDR_2,
                    self.addr_long.get()[2],
                    InternalState::CONFIG_IEEE2_SET,
                );
            }
            InternalState::CONFIG_IEEE2_SET => {
                self.state_transition_write(
                    RF233Register::IEEE_ADDR_3,
                    self.addr_long.get()[3],
                    InternalState::CONFIG_IEEE3_SET,
                );
            }
            InternalState::CONFIG_IEEE3_SET => {
                self.state_transition_write(
                    RF233Register::IEEE_ADDR_4,
                    self.addr_long.get()[4],
                    InternalState::CONFIG_IEEE4_SET,
                );
            }
            InternalState::CONFIG_IEEE4_SET => {
                self.state_transition_write(
                    RF233Register::IEEE_ADDR_5,
                    self.addr_long.get()[5],
                    InternalState::CONFIG_IEEE5_SET,
                );
            }
            InternalState::CONFIG_IEEE5_SET => {
                self.state_transition_write(
                    RF233Register::IEEE_ADDR_6,
                    self.addr_long.get()[6],
                    InternalState::CONFIG_IEEE6_SET,
                );
            }
            InternalState::CONFIG_IEEE6_SET => {
                self.state_transition_write(
                    RF233Register::IEEE_ADDR_7,
                    self.addr_long.get()[7],
                    InternalState::CONFIG_IEEE7_SET,
                );
            }
            InternalState::CONFIG_IEEE7_SET => {
                let val = power_to_setting(self.tx_power.get());
                self.state_transition_write(
                    RF233Register::PHY_TX_PWR,
                    val,
                    InternalState::CONFIG_POWER_SET,
                );
            }
            InternalState::CONFIG_POWER_SET => {
                let val = self.channel.get().get_channel_number() | PHY_CC_CCA_MODE_CS_OR_ED;
                self.state_transition_write(
                    RF233Register::PHY_CC_CCA,
                    val,
                    InternalState::CONFIG_DONE,
                );
            }
            InternalState::CONFIG_DONE => {
                self.config_pending.set(false);
                self.state_transition_read(RF233Register::TRX_STATUS, InternalState::READY);
                self.cfg_client.map(|c| {
                    c.config_done(Ok(()));
                });
            }
        }
    }
}

impl<'a, S: spi::SpiMasterDevice<'a>> gpio::Client for RF233<'a, S> {
    fn fired(&self) {
        self.handle_interrupt();
    }
}

impl<'a, S: spi::SpiMasterDevice<'a>> RF233<'a, S> {
    pub fn new(
        spi: &'a S,
        spi_buf: &'static mut [u8],
        reg_write: &'static mut [u8; SPI_REGISTER_TRANSACTION_LENGTH],
        reg_read: &'static mut [u8; SPI_REGISTER_TRANSACTION_LENGTH],
        reset: &'a dyn gpio::Pin,
        sleep: &'a dyn gpio::Pin,
        irq: &'a dyn gpio::InterruptPin<'a>,
        channel: radio::RadioChannel,
    ) -> RF233<'a, S> {
        RF233 {
            spi,
            reset_pin: reset,
            sleep_pin: sleep,
            irq_pin: irq,
            radio_on: Cell::new(false),
            transmitting: Cell::new(false),
            receiving: Cell::new(false),
            spi_busy: Cell::new(false),
            crc_valid: Cell::new(false),
            state: Cell::new(InternalState::START),
            interrupt_handling: Cell::new(false),
            interrupt_pending: Cell::new(false),
            config_pending: Cell::new(false),
            sleep_pending: Cell::new(false),
            wake_pending: Cell::new(false),
            power_client_pending: Cell::new(false),
            tx_buf: MapCell::empty(),
            rx_buf: MapCell::empty(),
            tx_len: Cell::new(0),
            tx_client: OptionalCell::empty(),
            rx_client: OptionalCell::empty(),
            cfg_client: OptionalCell::empty(),
            power_client: OptionalCell::empty(),
            addr: Cell::new(0),
            addr_long: Cell::new([0x00; 8]),
            pan: Cell::new(0),
            tx_power: Cell::new(setting_to_power(PHY_TX_PWR)),
            channel: Cell::new(channel),
            spi_rx: MapCell::new((&mut reg_read[..]).into()),
            spi_tx: MapCell::new((&mut reg_write[..]).into()),
            spi_buf: MapCell::new(spi_buf.into()),
        }
    }

    fn handle_interrupt(&self) {
        // In most cases, the first thing the driver does on handling an interrupt is
        // read the IRQ status; this pushes most logic to the SPI handler.
        // The one exception is when the radio receives a packet; to prevent this
        // packet from being overwritten before reading it from the radio,
        // the driver needs to disable reception. This has to be done in the first
        // SPI operation.
        if !self.spi_busy.get() {
            if self.state.get() == InternalState::RX {
                // We've received a complete frame; need to disable
                // reception until we've read it out from RAM,
                // otherwise subsequent packets may corrupt it.
                // Dynamic Frame Buffer protection (RF233 manual, Sec
                // 11.8) is insufficient because we perform multiple
                // SPI operations to read a frame, and the RF233
                // releases its protection after the first SPI
                // operation.
                self.state_transition_write(
                    RF233Register::TRX_STATE,
                    RF233TrxCmd::PLL_ON as u8,
                    InternalState::RX_TURNING_OFF,
                );
            } else {
                self.interrupt_handling.set(true);
                let _ = self.register_read(RF233Register::IRQ_STATUS);
            }
        } else {
            self.interrupt_pending.set(true);
        }
    }

    fn register_write(&self, reg: RF233Register, val: u8) -> Result<(), ErrorCode> {
        if (self.spi_busy.get() || self.spi_tx.is_none() || self.spi_rx.is_none()) {
            return Err(ErrorCode::BUSY);
        }
        let mut wbuf = self.spi_tx.take().unwrap();
        let rbuf = self.spi_rx.take().unwrap();
        wbuf[0] = (reg as u8) | RF233BusCommand::REGISTER_WRITE as u8;
        wbuf[1] = val;
        wbuf.slice(0..2);
        // TODO verify SPI return value
        let _ = self.spi.read_write_bytes(wbuf, Some(rbuf));
        self.spi_busy.set(true);

        Ok(())
    }

    fn register_read(&self, reg: RF233Register) -> Result<(), ErrorCode> {
        if (self.spi_busy.get() || self.spi_tx.is_none() || self.spi_rx.is_none()) {
            return Err(ErrorCode::BUSY);
        }

        let mut wbuf = self.spi_tx.take().unwrap();
        let rbuf = self.spi_rx.take().unwrap();
        wbuf.reset();
        wbuf.slice(0..2);
        wbuf[0] = (reg as u8) | RF233BusCommand::REGISTER_READ as u8;
        wbuf[1] = 0;
        // TODO verify SPI return value
        let _ = self.spi.read_write_bytes(wbuf, Some(rbuf));
        self.spi_busy.set(true);

        Ok(())
    }

    fn frame_write(&self, buf: &'static mut [u8], frame_len: u8) -> Result<(), ErrorCode> {
        if self.spi_busy.get() {
            return Err(ErrorCode::BUSY);
        }

        let buf_len = radio::PSDU_OFFSET + frame_len as usize;
        buf[0] = RF233BusCommand::FRAME_WRITE as u8;
        let mut buf: SubSliceMut<'static, u8> = buf.into();
        buf.slice(0..buf_len);
        // TODO verify SPI return value
        let _ = self.spi.read_write_bytes(buf, self.spi_buf.take());
        self.spi_busy.set(true);
        Ok(())
    }

    fn frame_read(&self, buf: &'static mut [u8], frame_len: u8) -> Result<(), ErrorCode> {
        if self.spi_busy.get() {
            return Err(ErrorCode::BUSY);
        }

        let buf_len = radio::PSDU_OFFSET + frame_len as usize;
        let mut wbuf = self.spi_buf.take().unwrap();
        wbuf[0] = RF233BusCommand::FRAME_READ as u8;
        wbuf.reset();
        wbuf.slice(0..buf_len);
        // TODO verify SPI return value
        let _ = self.spi.read_write_bytes(wbuf, Some(buf.into()));
        self.spi_busy.set(true);
        Ok(())
    }

    fn state_transition_write(&self, reg: RF233Register, val: u8, state: InternalState) {
        self.state.set(state);
        let _ = self.register_write(reg, val);
    }

    fn state_transition_read(&self, reg: RF233Register, state: InternalState) {
        self.state.set(state);
        let _ = self.register_read(reg);
    }
}

impl<'a, S: spi::SpiMasterDevice<'a>> radio::RadioConfig<'a> for RF233<'a, S> {
    fn initialize(&self) -> Result<(), ErrorCode> {
        Ok(())
    }

    fn reset(&self) -> Result<(), ErrorCode> {
        self.spi.configure(
            spi::ClockPolarity::IdleLow,
            spi::ClockPhase::SampleLeading,
            100000,
        )?;
        self.reset_pin.make_output();
        self.sleep_pin.make_output();
        for _i in 0..10000 {
            self.reset_pin.clear();
        }
        self.reset_pin.set();
        self.sleep_pin.clear();
        self.transmitting.set(false);
        Ok(())
    }

    fn start(&self) -> Result<(), ErrorCode> {
        self.sleep_pending.set(false);

        if self.state.get() != InternalState::START && self.state.get() != InternalState::SLEEP {
            return Err(ErrorCode::ALREADY);
        }

        if self.state.get() == InternalState::SLEEP {
            self.state_transition_read(RF233Register::TRX_STATUS, InternalState::SLEEP_WAKE);
        } else {
            // Delay wakeup until the radio turns all the way off
            self.wake_pending.set(true);
            let _ = self.register_read(RF233Register::PART_NUM);
        }

        Ok(())
    }

    fn stop(&self) -> Result<(), ErrorCode> {
        if self.state.get() == InternalState::SLEEP
            || self.state.get() == InternalState::SLEEP_TRX_OFF
        {
            return Err(ErrorCode::ALREADY);
        }

        match self.state.get() {
            InternalState::READY | InternalState::ON_PLL_WAITING => {
                self.radio_on.set(false);
                self.state_transition_write(
                    RF233Register::TRX_STATE,
                    RF233TrxCmd::OFF as u8,
                    InternalState::SLEEP_TRX_OFF,
                );
            }
            _ => {
                self.sleep_pending.set(true);
            }
        }

        Ok(())
    }

    fn is_on(&self) -> bool {
        self.radio_on.get()
    }

    fn busy(&self) -> bool {
        self.state.get() != InternalState::READY && self.state.get() != InternalState::SLEEP
    }

    fn set_config_client(&self, client: &'a dyn radio::ConfigClient) {
        self.cfg_client.set(client);
    }

    fn set_power_client(&self, client: &'a dyn radio::PowerClient) {
        self.power_client.set(client);
    }

    fn set_address(&self, addr: u16) {
        self.addr.set(addr);
    }

    fn set_address_long(&self, addr: [u8; 8]) {
        self.addr_long.set(addr);
    }

    fn set_pan(&self, id: u16) {
        self.pan.set(id);
    }

    fn set_tx_power(&self, power: i8) -> Result<(), ErrorCode> {
        if (power > 4 || power < -17) {
            Err(ErrorCode::INVAL)
        } else {
            self.tx_power.set(power);
            Ok(())
        }
    }

    fn set_channel(&self, chan: radio::RadioChannel) {
        self.channel.set(chan);
    }

    fn get_address(&self) -> u16 {
        self.addr.get()
    }

    fn get_address_long(&self) -> [u8; 8] {
        self.addr_long.get()
    }

    /// The 16-bit PAN ID
    fn get_pan(&self) -> u16 {
        self.pan.get()
    }
    /// The transmit power, in dBm
    fn get_tx_power(&self) -> i8 {
        self.tx_power.get()
    }
    /// The 802.15.4 channel
    fn get_channel(&self) -> u8 {
        self.channel.get().get_channel_number()
    }

    fn config_commit(&self) {
        let pending = self.config_pending.get();
        if !pending {
            self.config_pending.set(true);
            let state = self.state.get();

            if state == InternalState::READY {
                // Start configuration commit
                self.state_transition_write(
                    RF233Register::SHORT_ADDR_0,
                    (self.addr.get() & 0xff) as u8,
                    InternalState::CONFIG_SHORT0_SET,
                );
            } else {
                // Do nothing --
                // Configuration will be pushed automatically on boot,
                // or pending flag will be checked on return to READY
                // and commit started
            }
        }
    }
}

impl<'a, S: spi::SpiMasterDevice<'a>> radio::RadioData<'a> for RF233<'a, S> {
    fn set_transmit_client(&self, client: &'a dyn radio::TxClient) {
        self.tx_client.set(client);
    }

    fn set_receive_client(&self, client: &'a dyn radio::RxClient) {
        self.rx_client.set(client);
    }

    fn set_receive_buffer(&self, buffer: &'static mut [u8]) {
        self.rx_buf.replace(buffer.into());
    }

    // The payload length is the length of the MAC payload, not the PSDU
    fn transmit(
        &self,
        spi_buf: &'static mut [u8],
        frame_len: usize,
    ) -> Result<(), (ErrorCode, &'static mut [u8])> {
        let state = self.state.get();
        let frame_len = frame_len + radio::MFR_SIZE;

        if !self.radio_on.get() {
            return Err((ErrorCode::OFF, spi_buf));
        } else if self.tx_buf.is_some() || self.transmitting.get() {
            return Err((ErrorCode::BUSY, spi_buf));
        } else if radio::PSDU_OFFSET + frame_len >= spi_buf.len() {
            // Not enough room for CRC
            return Err((ErrorCode::SIZE, spi_buf));
        }

        // Set PHY header to be the frame length
        spi_buf[1] = frame_len as u8;
        self.tx_buf.replace(spi_buf.into());
        self.tx_len.set(frame_len as u8);
        self.transmitting.set(true);

        if !self.receiving.get() && state == InternalState::READY {
            self.state_transition_read(
                RF233Register::TRX_STATUS,
                InternalState::TX_STATUS_PRECHECK1,
            );
        }
        Ok(())
    }
}