1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! SyscallDriver for sending 802.15.4 packets with an Atmel RF233.
//!
//! This implementation is completely non-blocking. This means that the state
//! machine is somewhat complex, as it must interleave interrupt handling with
//! requests and radio state management. See the SPI `read_write_done` handler
//! for details.
//
// Author: Philip Levis
// Date: Jan 12 2017
//
#![allow(unused_parens)]
use crate::rf233_const::{
ExternalState, InteruptFlags, RF233BusCommand, RF233Register, RF233TrxCmd,
};
use core::cell::Cell;
use kernel::hil::gpio;
use kernel::hil::radio;
use kernel::hil::spi;
use kernel::utilities::cells::MapCell;
use kernel::utilities::cells::OptionalCell;
use kernel::utilities::leasable_buffer::SubSliceMut;
use kernel::ErrorCode;
use crate::rf233_const::CSMA_SEED_1;
use crate::rf233_const::IRQ_MASK;
use crate::rf233_const::PHY_CC_CCA_MODE_CS_OR_ED;
use crate::rf233_const::PHY_RSSI_RX_CRC_VALID;
use crate::rf233_const::PHY_TX_PWR;
use crate::rf233_const::SHORT_ADDR_0;
use crate::rf233_const::SHORT_ADDR_1;
use crate::rf233_const::TRX_CTRL_1;
use crate::rf233_const::TRX_CTRL_2;
use crate::rf233_const::TRX_RPC;
use crate::rf233_const::TRX_TRAC_CHANNEL_ACCESS_FAILURE;
use crate::rf233_const::TRX_TRAC_MASK;
use crate::rf233_const::XAH_CTRL_0;
use crate::rf233_const::XAH_CTRL_1;
#[allow(non_camel_case_types, dead_code)]
#[derive(Copy, Clone, PartialEq)]
enum InternalState {
// There are 6 high-level states:
// START -- the initialization sequence
// ON -- turning the radio on to receive
// READY -- waiting to receive packets
// RX -- receiving a packet
// TX -- transmitting a packet
// CONFIG -- reconfiguring the radio
START,
START_PART_READ,
START_STATUS_READ,
START_TURNING_OFF,
START_CTRL1_SET,
START_CCA_SET,
START_PWR_SET,
START_CTRL2_SET,
START_IRQMASK_SET,
START_XAH1_SET,
START_XAH0_SET,
START_PANID0_SET,
START_PANID1_SET,
START_IEEE0_SET,
START_IEEE1_SET,
START_IEEE2_SET,
START_IEEE3_SET,
START_IEEE4_SET,
START_IEEE5_SET,
START_IEEE6_SET,
START_IEEE7_SET,
START_SHORT0_SET,
START_SHORT1_SET,
START_CSMA_0_SEEDED,
START_CSMA_1_SEEDED,
START_RPC_SET,
// Radio is configured, turning it on.
ON_STATUS_READ,
ON_PLL_WAITING,
ON_PLL_SET,
// Radio is in the RX_AACK_ON state, ready to receive packets.
READY,
// States that transition the radio to and from SLEEP
SLEEP_TRX_OFF,
SLEEP,
SLEEP_WAKE,
// States pertaining to packet transmission.
// Note that this state machine can be aborted due to
// an incoming packet; self.transmitting keeps track
// of whether a transmission is pending.
TX_STATUS_PRECHECK1,
TX_WRITING_FRAME,
TX_WRITING_FRAME_DONE,
TX_STATUS_PRECHECK2,
TX_PLL_START,
TX_PLL_WAIT,
TX_ARET_ON,
TX_TRANSMITTING,
TX_READ_ACK,
TX_DONE,
TX_RETURN_TO_RX,
// This state denotes we began a transmission, but
// before we could transition to PLL_ON a packet began
// to be received. When we handle the initial RX interrupt,
// we'll transition to the correct state. We can't return to READY
// because we need to block other operations.
TX_PENDING,
// Intermediate states when committing configuration from RAM
// to the chiP; short address, PAN address, tx power and channel
CONFIG_SHORT0_SET,
CONFIG_SHORT1_SET,
CONFIG_PAN0_SET,
CONFIG_PAN1_SET,
CONFIG_IEEE0_SET,
CONFIG_IEEE1_SET,
CONFIG_IEEE2_SET,
CONFIG_IEEE3_SET,
CONFIG_IEEE4_SET,
CONFIG_IEEE5_SET,
CONFIG_IEEE6_SET,
CONFIG_IEEE7_SET,
CONFIG_POWER_SET,
CONFIG_DONE,
// RX is a short-lived state for when software has detected
// the chip is receiving a packet (by internal state) but has
// not received the interrupt yet. I.e., the SFD has been
// received but not the rest of the packet yet.
RX,
// The packet has been successfully received
RX_TURNING_OFF, // Disabling packet reception
RX_READY_TO_READ, // Reception disabled, handle interrupt and start reading
RX_START_READING, // Starting to read a packet out of the radio
RX_READING_FRAME_LEN, // We've read the length of the frame
RX_READING_FRAME_LEN_DONE,
RX_READING_FRAME, // Reading the packet out of the radio
RX_READING_FRAME_DONE, // Now read a register to verify FCS
RX_READING_FRAME_FCS_DONE,
RX_ENABLING_RECEPTION, // Re-enabling reception
}
// There are two tricky parts to this capsule: buffer management
// and the finite state machine.
//
// Buffer management is tricky because the implementation tries to
// minimize the different buffers it uses. It needs to be able to send
// 2-byte register reads and writes on initialization. So it needs 2
// 2-byte buffers for these. When it is transmitting a packet, it
// performs one long write over SPI to move the packet to the radio.
// It needs a read buffer of equal length so it can check the radio
// state. Similarly, when it reads a packet out of RAM into a buffer,
// it needs an equal length buffer for the SPI write. Finally, it
// needs a buffer to receive packets into, so it doesn't drop a packet
// just because an application didn't read in time. Therefore, the
// structure needs four buffers: 2 2-byte buffers and two
// packet-length buffers. Since the SPI callback does not distinguish
// which buffers are being used, the read_write_done callback checks
// which state the stack is in and places the buffers back
// accordingly. A bug here would mean a memory leak and later panic
// when a buffer that should be present has been lost.
//
// The finite state machine is tricky for two reasons. First, the
// radio can issue an interrupt at any time, and the stack handles the
// interrupt (clearing it) by reading the IRQ_STATUS
// register. Therefore, when an interrupt occurs, the next SPI
// operation needs to read IRQ_STATUS (and potentially change
// self.state) before returning to the main state
// machine. self.interrupt_pending indicates if an interrupt has fired
// and therefore must be handled by reading IRQ_STATUS and acting
// accordingly. self.interrupt_handling indicates that a read of
// IRQ_STATUS is pending and so the read_write_done should enact state
// transitions based on the interrupt.
//
// Second, it is possible that a packet starts arriving while the
// stack is preparing a transmission. In this case, the transmission
// needs to be aborted, but restarted once the reception
// completes. The stack keeps track of this with self.transmitting.
// The final state before transmission is TX_ARET_ON; the next step is
// to start transmission. If a start-of-frame interrupt is handled at
// any point in the TX state machine, the stack moves to the RX state
// and waits for the interrupt specifying the entire packet has been
// received.
pub const SPI_REGISTER_TRANSACTION_LENGTH: usize = 2;
pub struct RF233<'a, S: spi::SpiMasterDevice<'a>> {
spi: &'a S,
radio_on: Cell<bool>,
transmitting: Cell<bool>,
receiving: Cell<bool>,
spi_busy: Cell<bool>,
crc_valid: Cell<bool>,
interrupt_handling: Cell<bool>,
interrupt_pending: Cell<bool>,
config_pending: Cell<bool>,
sleep_pending: Cell<bool>,
wake_pending: Cell<bool>,
power_client_pending: Cell<bool>,
reset_pin: &'a dyn gpio::Pin,
sleep_pin: &'a dyn gpio::Pin,
irq_pin: &'a dyn gpio::InterruptPin<'a>,
state: Cell<InternalState>,
tx_buf: MapCell<SubSliceMut<'static, u8>>,
rx_buf: MapCell<SubSliceMut<'static, u8>>,
tx_len: Cell<u8>,
tx_client: OptionalCell<&'a dyn radio::TxClient>,
rx_client: OptionalCell<&'a dyn radio::RxClient>,
cfg_client: OptionalCell<&'a dyn radio::ConfigClient>,
power_client: OptionalCell<&'a dyn radio::PowerClient>,
addr: Cell<u16>,
addr_long: Cell<[u8; 8]>,
pan: Cell<u16>,
tx_power: Cell<i8>,
channel: Cell<radio::RadioChannel>,
spi_rx: MapCell<SubSliceMut<'static, u8>>,
spi_tx: MapCell<SubSliceMut<'static, u8>>,
spi_buf: MapCell<SubSliceMut<'static, u8>>,
}
fn setting_to_power(setting: u8) -> i8 {
match setting {
0x00 => 4,
0x01 => 4,
0x02 => 3,
0x03 => 3,
0x04 => 2,
0x05 => 2,
0x06 => 1,
0x07 => 0,
0x08 => -1,
0x09 => -2,
0x0A => -3,
0x0B => -4,
0x0C => -6,
0x0D => -8,
0x0E => -12,
0x0F => -17,
_ => -127,
}
}
fn power_to_setting(power: i8) -> u8 {
if (power >= 4) {
0x00
} else if (power >= 3) {
0x03
} else if (power >= 2) {
0x05
} else if (power >= 1) {
0x06
} else if (power >= 0) {
0x07
} else if (power >= -1) {
0x08
} else if (power >= -2) {
0x09
} else if (power >= -3) {
0x0A
} else if (power >= -4) {
0x0B
} else if (power >= -6) {
0x0C
} else if (power >= -8) {
0x0D
} else if (power >= -12) {
0x0E
} else {
0x0F
}
}
fn interrupt_included(mask: u8, interrupt: InteruptFlags) -> bool {
let int = interrupt as u8;
(mask & int) == int
}
impl<'a, S: spi::SpiMasterDevice<'a>> spi::SpiMasterClient for RF233<'a, S> {
// This function is a bit confusing because the order of the logic in the
// function is different than the order of operations during transmission
// and reception.
fn read_write_done(
&self,
mut _write: SubSliceMut<'static, u8>,
mut read: Option<SubSliceMut<'static, u8>>,
_spi_status: Result<usize, ErrorCode>,
) {
self.spi_busy.set(false);
let rbuf = read.take().unwrap();
let status = rbuf[0] & 0x1f;
let result = rbuf[1];
// Need to put buffers back. Four cases:
// 1. a frame read completed, need to put RX buf back and put the
// used write buf back into spi_buf
// 2. a frame length read completed, need to put RX buf back and
// put the used write buf back into spi_buf
// 3. a frame write completed, need to put TX buf back and put the
// used read buf back into spi_buf
// 4. a register op completed, need to but the used read buf back into
// spi_rx and the used write buf into spi_tx. interrupt handling
// is implicitly a register op.
// Note that in cases 1-3, we need to enact a state transition
// so that, if an interrupt is pending, we don't put the buffers
// back again. The _DONE states denote that the frame transfer
// has completed. So we'll put the buffers back only once.
let state = self.state.get();
let handling = self.interrupt_handling.get();
if !handling && state == InternalState::RX_READING_FRAME_LEN {
self.spi_buf.replace(_write);
self.rx_buf.replace(rbuf);
self.state.set(InternalState::RX_READING_FRAME_LEN_DONE);
} else if !handling && state == InternalState::RX_READING_FRAME {
self.spi_buf.replace(_write);
self.rx_buf.replace(rbuf);
self.state.set(InternalState::RX_READING_FRAME_DONE);
} else if !handling && state == InternalState::TX_WRITING_FRAME {
self.spi_buf.replace(rbuf);
self.tx_buf.replace(_write);
self.state.set(InternalState::TX_WRITING_FRAME_DONE);
} else {
self.spi_rx.replace(rbuf);
self.spi_tx.replace(_write);
}
let state = self.state.get();
// This case is when the SPI operation is reading the IRQ_STATUS
// register from handling an interrupt. Note that we're done handling
// the interrupt and continue with the state machine.
if handling {
self.interrupt_handling.set(false);
let interrupt = result;
// If we're going to sleep, ignore the interrupt and continue
if state != InternalState::SLEEP_TRX_OFF && state != InternalState::SLEEP {
if state == InternalState::ON_PLL_WAITING {
if interrupt_included(interrupt, InteruptFlags::IRQ_0_PLL_LOCK) {
self.state.set(InternalState::ON_PLL_SET);
}
} else if state == InternalState::TX_TRANSMITTING
&& interrupt_included(interrupt, InteruptFlags::IRQ_3_TRX_END)
{
self.state.set(InternalState::TX_DONE);
}
if interrupt_included(interrupt, InteruptFlags::IRQ_2_RX_START) {
// Start of frame
self.receiving.set(true);
self.state.set(InternalState::RX);
}
// We've received an entire frame into the frame buffer. This should be
// in the InternalState::RX_READY_TO_READ state.
// There are three cases:
// 1. we have a receive buffer: copy it out
// 2. no receive buffer, but transmission pending: send
// 3. no receive buffer, no transmission: return to waiting
if (interrupt_included(interrupt, InteruptFlags::IRQ_3_TRX_END)
&& self.receiving.get())
{
self.receiving.set(false);
if self.rx_buf.is_some() {
self.state.set(InternalState::RX_START_READING);
} else if self.transmitting.get() {
self.state_transition_read(
RF233Register::MIN,
InternalState::TX_STATUS_PRECHECK1,
);
return;
} else {
self.state_transition_read(RF233Register::TRX_STATUS, InternalState::READY);
return;
}
}
}
}
// No matter what, if the READY state is reached, the radio is on. This
// needs to occur before handling the interrupt below.
if self.state.get() == InternalState::READY {
self.wake_pending.set(false);
// If we just woke up, note that we need to call the PowerClient
if !self.radio_on.get() {
self.power_client_pending.set(true);
}
self.radio_on.set(true);
}
// An interrupt can only be pending if an interrupt was fired during an
// SPI operation: we wait for the SPI operation to complete then handle
// the interrupt by reading the IRQ_STATUS register over the SPI.
//
// However, we should not handle the interrupt if we are in the midst of
// receiving a frame.
if self.interrupt_pending.get() {
match self.state.get() {
InternalState::RX_TURNING_OFF
| InternalState::RX_START_READING
| InternalState::RX_READING_FRAME_DONE
| InternalState::RX_READING_FRAME_FCS_DONE => {}
_ => {
self.interrupt_pending.set(false);
self.handle_interrupt();
return;
}
}
}
// Similarly, if a configuration is pending, we only start the
// configuration process when we are in a state where it is legal to
// start the configuration process.
if self.config_pending.get() && self.state.get() == InternalState::READY {
self.state_transition_write(
RF233Register::SHORT_ADDR_0,
(self.addr.get() & 0xff) as u8,
InternalState::CONFIG_SHORT0_SET,
);
}
match self.state.get() {
// Default on state; wait for transmit() call or receive interrupt
InternalState::READY => {
// If stop() was called, start turning off the radio.
if self.sleep_pending.get() {
self.sleep_pending.set(false);
self.radio_on.set(false);
self.state_transition_write(
RF233Register::TRX_STATE,
RF233TrxCmd::OFF as u8,
InternalState::SLEEP_TRX_OFF,
);
} else if self.power_client_pending.get() {
// fixes bug where client would start transmitting before this state completed
self.power_client_pending.set(false);
self.power_client.map(|p| {
p.changed(self.radio_on.get());
});
}
}
// Starting state, begin start sequence.
InternalState::START => {
self.state_transition_read(
RF233Register::IRQ_STATUS,
InternalState::START_PART_READ,
);
}
InternalState::START_PART_READ => {
self.state_transition_read(
RF233Register::TRX_STATUS,
InternalState::START_STATUS_READ,
);
}
InternalState::START_STATUS_READ => {
if status == ExternalState::ON as u8 {
self.state_transition_write(
RF233Register::TRX_STATE,
RF233TrxCmd::OFF as u8,
InternalState::START_TURNING_OFF,
);
} else {
self.state_transition_write(
RF233Register::TRX_CTRL_1,
TRX_CTRL_1,
InternalState::START_CTRL1_SET,
);
}
}
InternalState::START_TURNING_OFF => {
self.irq_pin.make_input();
self.irq_pin.clear();
self.irq_pin
.set_floating_state(gpio::FloatingState::PullNone);
self.irq_pin
.enable_interrupts(gpio::InterruptEdge::RisingEdge);
self.state_transition_write(
RF233Register::TRX_CTRL_1,
TRX_CTRL_1,
InternalState::START_CTRL1_SET,
);
}
InternalState::START_CTRL1_SET => {
let val = self.channel.get().get_channel_number() | PHY_CC_CCA_MODE_CS_OR_ED;
self.state_transition_write(
RF233Register::PHY_CC_CCA,
val,
InternalState::START_CCA_SET,
);
}
InternalState::START_CCA_SET => {
let val = power_to_setting(self.tx_power.get());
self.state_transition_write(
RF233Register::PHY_TX_PWR,
val,
InternalState::START_PWR_SET,
);
}
InternalState::START_PWR_SET => self.state_transition_write(
RF233Register::TRX_CTRL_2,
TRX_CTRL_2,
InternalState::START_CTRL2_SET,
),
InternalState::START_CTRL2_SET => {
self.state_transition_write(
RF233Register::IRQ_MASK,
IRQ_MASK,
InternalState::START_IRQMASK_SET,
);
}
InternalState::START_IRQMASK_SET => {
self.state_transition_write(
RF233Register::XAH_CTRL_1,
XAH_CTRL_1,
InternalState::START_XAH1_SET,
);
}
InternalState::START_XAH1_SET => {
// This encapsulates the frame retry and CSMA retry
// settings in the RF233 C code
self.state_transition_write(
RF233Register::XAH_CTRL_0,
XAH_CTRL_0,
InternalState::START_XAH0_SET,
);
}
InternalState::START_XAH0_SET => {
self.state_transition_write(
RF233Register::PAN_ID_0,
(self.pan.get() >> 8) as u8,
InternalState::START_PANID0_SET,
);
}
InternalState::START_PANID0_SET => {
self.state_transition_write(
RF233Register::PAN_ID_1,
(self.pan.get() & 0xff) as u8,
InternalState::START_PANID1_SET,
);
}
InternalState::START_PANID1_SET => {
self.state_transition_write(
RF233Register::IEEE_ADDR_0,
self.addr_long.get()[0],
InternalState::START_IEEE0_SET,
);
}
InternalState::START_IEEE0_SET => {
self.state_transition_write(
RF233Register::IEEE_ADDR_1,
self.addr_long.get()[1],
InternalState::START_IEEE1_SET,
);
}
InternalState::START_IEEE1_SET => {
self.state_transition_write(
RF233Register::IEEE_ADDR_2,
self.addr_long.get()[2],
InternalState::START_IEEE2_SET,
);
}
InternalState::START_IEEE2_SET => {
self.state_transition_write(
RF233Register::IEEE_ADDR_3,
self.addr_long.get()[3],
InternalState::START_IEEE3_SET,
);
}
InternalState::START_IEEE3_SET => {
self.state_transition_write(
RF233Register::IEEE_ADDR_4,
self.addr_long.get()[4],
InternalState::START_IEEE4_SET,
);
}
InternalState::START_IEEE4_SET => {
self.state_transition_write(
RF233Register::IEEE_ADDR_5,
self.addr_long.get()[5],
InternalState::START_IEEE5_SET,
);
}
InternalState::START_IEEE5_SET => {
self.state_transition_write(
RF233Register::IEEE_ADDR_6,
self.addr_long.get()[6],
InternalState::START_IEEE6_SET,
);
}
InternalState::START_IEEE6_SET => {
self.state_transition_write(
RF233Register::IEEE_ADDR_7,
self.addr_long.get()[7],
InternalState::START_IEEE7_SET,
);
}
InternalState::START_IEEE7_SET => {
self.state_transition_write(
RF233Register::SHORT_ADDR_0,
(self.addr.get() & 0xff) as u8,
InternalState::START_SHORT0_SET,
);
}
InternalState::START_SHORT0_SET => {
self.state_transition_write(
RF233Register::SHORT_ADDR_1,
(self.addr.get() >> 8) as u8,
InternalState::START_SHORT1_SET,
);
}
InternalState::START_SHORT1_SET => {
self.state_transition_write(
RF233Register::CSMA_SEED_0,
SHORT_ADDR_0 + SHORT_ADDR_1,
InternalState::START_CSMA_0_SEEDED,
);
}
InternalState::START_CSMA_0_SEEDED => {
self.state_transition_write(
RF233Register::CSMA_SEED_1,
CSMA_SEED_1,
InternalState::START_CSMA_1_SEEDED,
);
}
InternalState::START_CSMA_1_SEEDED => {
self.state_transition_write(
RF233Register::TRX_RPC,
TRX_RPC,
InternalState::START_RPC_SET,
);
}
InternalState::START_RPC_SET => {
// If asleep, turn on
self.state_transition_read(
RF233Register::TRX_STATUS,
InternalState::ON_STATUS_READ,
);
}
InternalState::ON_STATUS_READ => {
self.state_transition_write(
RF233Register::TRX_STATE,
RF233TrxCmd::PLL_ON as u8,
InternalState::ON_PLL_WAITING,
);
}
InternalState::ON_PLL_WAITING => {
// Waiting for the PLL interrupt, do nothing
}
// Final startup state, transition to READY and turn radio on.
InternalState::ON_PLL_SET => {
// We've completed the SPI operation to read the
// IRQ_STATUS register, triggered by an interrupt
// denoting moving to the PLL_ON state, so move
// to RX_ON (see Sec 7, pg 36 of RF233 datasheet
self.state_transition_write(
RF233Register::TRX_STATE,
RF233TrxCmd::RX_AACK_ON as u8,
InternalState::READY,
);
}
InternalState::SLEEP_TRX_OFF => {
// Toggle the sleep pin to put the radio into sleep mode
self.sleep_pin.set();
// If start() was called while we were shutting down,
// immediately start turning the radio back on
if self.wake_pending.get() {
self.state_transition_read(
RF233Register::TRX_STATUS,
InternalState::SLEEP_WAKE,
);
// Inform power client that the radio turned off successfully
} else {
self.state.set(InternalState::SLEEP);
self.power_client.map(|p| {
p.changed(self.radio_on.get());
});
self.irq_pin.disable_interrupts(); // Lets MCU sleep
}
}
// Do nothing; a call to start() is required to restart radio
InternalState::SLEEP => {}
InternalState::SLEEP_WAKE => {
// Toggle the sleep pin to take the radio out of sleep mode into
// InternalState::TRX_OFF, then transition directly to RX_AACK_ON.
self.sleep_pin.clear();
self.irq_pin
.enable_interrupts(gpio::InterruptEdge::RisingEdge);
self.state_transition_write(
RF233Register::TRX_STATE,
RF233TrxCmd::RX_AACK_ON as u8,
InternalState::READY,
);
}
InternalState::TX_STATUS_PRECHECK1 => {
if (status == ExternalState::BUSY_RX_AACK as u8
|| status == ExternalState::BUSY_TX_ARET as u8
|| status == ExternalState::BUSY_RX as u8)
{
self.state.set(InternalState::TX_PENDING);
} else {
// Something wrong here?
self.state.set(InternalState::TX_WRITING_FRAME);
let wbuf = self.tx_buf.take().unwrap();
let _ = self.frame_write(wbuf.take(), self.tx_len.get());
}
}
InternalState::TX_WRITING_FRAME => {} // Should never get here
InternalState::TX_WRITING_FRAME_DONE => {
self.state_transition_read(
RF233Register::TRX_STATUS,
InternalState::TX_STATUS_PRECHECK2,
);
}
InternalState::TX_STATUS_PRECHECK2 => {
if (status == ExternalState::BUSY_RX_AACK as u8
|| status == ExternalState::BUSY_TX_ARET as u8
|| status == ExternalState::BUSY_RX as u8)
{
self.receiving.set(true);
self.state.set(InternalState::RX);
} else {
self.state_transition_write(
RF233Register::TRX_STATE,
RF233TrxCmd::PLL_ON as u8,
InternalState::TX_PLL_START,
);
}
}
InternalState::TX_PLL_START => {
self.state_transition_read(RF233Register::TRX_STATUS, InternalState::TX_PLL_WAIT);
}
InternalState::TX_PLL_WAIT => {
self.transmitting.set(true);
if status == ExternalState::STATE_TRANSITION_IN_PROGRESS as u8 {
self.state_transition_read(
RF233Register::TRX_STATUS,
InternalState::TX_PLL_WAIT,
);
} else if status != ExternalState::PLL_ON as u8 {
self.state_transition_write(
RF233Register::TRX_STATE,
RF233TrxCmd::PLL_ON as u8,
InternalState::TX_PLL_WAIT,
);
} else {
self.state_transition_write(
RF233Register::TRX_STATE,
RF233TrxCmd::TX_ARET_ON as u8,
InternalState::TX_ARET_ON,
);
}
}
InternalState::TX_ARET_ON => {
self.state_transition_write(
RF233Register::TRX_STATE,
RF233TrxCmd::TX_START as u8,
InternalState::TX_TRANSMITTING,
);
}
InternalState::TX_TRANSMITTING => {
// Do nothing, wait for TRX_END interrupt denoting transmission
// completed. The code at the top of this SPI handler for
// interrupt handling will transition to the TX_DONE state.
}
InternalState::TX_DONE => {
self.state_transition_write(
RF233Register::TRX_STATE,
RF233TrxCmd::RX_AACK_ON as u8,
InternalState::TX_READ_ACK,
);
}
InternalState::TX_READ_ACK => {
self.state_transition_read(
RF233Register::TRX_STATE,
InternalState::TX_RETURN_TO_RX,
);
}
// Insert read of TRX_STATUS here, checking TRAC
InternalState::TX_RETURN_TO_RX => {
let ack: bool = (result & TRX_TRAC_MASK) == 0;
if status == ExternalState::RX_AACK_ON as u8 {
let return_code = if (result & TRX_TRAC_MASK) == TRX_TRAC_CHANNEL_ACCESS_FAILURE
{
Err(ErrorCode::FAIL)
} else {
Ok(())
};
self.transmitting.set(false);
let buf = self.tx_buf.take();
self.state_transition_read(RF233Register::TRX_STATUS, InternalState::READY);
self.tx_client.map(|c| {
c.send_done(buf.unwrap().take(), ack, return_code);
});
} else {
let _ = self.register_read(RF233Register::TRX_STATUS);
}
}
// This state occurs when, in the midst of starting a
// transmission, we discovered that the radio had moved into
// a receive state. Since this will trigger interrupts,
// we enter this dead state and just wait for the interrupt
// handlers.
InternalState::TX_PENDING => {}
// No operations in the RX state, an SFD interrupt should
// take us out of it.
InternalState::RX => {}
InternalState::RX_TURNING_OFF => {
// This is the case when the driver turns off reception in
// response to receiving a frame, to make sure it is not
// overwritten. Now we are reading to handle the interrupt and
// start reading out the frame.
self.state_transition_read(
RF233Register::IRQ_STATUS,
InternalState::RX_READY_TO_READ,
);
self.interrupt_handling.set(true);
}
// This state is when the driver handles the pending TRX_END interrupt
// on reception, so is handled above in the interrupt logic.
// the pending interrupt will be handled
InternalState::RX_READY_TO_READ => {}
// Read the length out
InternalState::RX_START_READING => {
self.state.set(InternalState::RX_READING_FRAME_LEN);
// A frame read of frame_length 0 results in the received SPI
// buffer only containing two bytes, the chip status and the
// frame length.
let _ = self.frame_read(self.rx_buf.take().unwrap().take(), 0);
}
InternalState::RX_READING_FRAME_LEN => {} // Should not get this
InternalState::RX_READING_FRAME_LEN_DONE => {
// A frame read starts with a 1-byte chip status followed by a
// 1-byte PHY header, which is the length of the frame.
// Then, the frame follows, and there are 3 more bytes at the
// end corresponding to LQI, ED, and RX_STATUS. Performing a
// shorter frame read just drops these bytes.
let frame_len = result;
// If the packet isn't too long to fit in the SPI buffer, read it
if (frame_len <= radio::MAX_FRAME_SIZE as u8
&& frame_len >= radio::MIN_FRAME_SIZE as u8)
{
self.state.set(InternalState::RX_READING_FRAME);
let rbuf = self.rx_buf.take().unwrap();
let _ = self.frame_read(rbuf.take(), frame_len);
} else if self.transmitting.get() {
// Packet was too long and a transmission is pending,
// start the transmission
self.state_transition_read(
RF233Register::TRX_STATUS,
InternalState::TX_STATUS_PRECHECK1,
);
} else {
// Packet was too long and no pending transmission,
// return to waiting for packets.
self.state_transition_read(RF233Register::TRX_STATUS, InternalState::READY);
}
}
InternalState::RX_READING_FRAME => {} // Should never get this state
InternalState::RX_READING_FRAME_DONE => {
// Now read the PHY_RSSI register to obtain the RX_CRC_VALID bit
self.state_transition_read(
RF233Register::PHY_RSSI,
InternalState::RX_READING_FRAME_FCS_DONE,
);
}
InternalState::RX_READING_FRAME_FCS_DONE => {
// Store whether the CRC was valid, then turn the radio back on.
self.crc_valid.set((result & PHY_RSSI_RX_CRC_VALID) != 0);
self.state_transition_write(
RF233Register::TRX_STATE,
RF233TrxCmd::RX_AACK_ON as u8,
InternalState::RX_ENABLING_RECEPTION,
);
}
InternalState::RX_ENABLING_RECEPTION => {
self.receiving.set(false);
// Stay awake if we receive a packet, another call to stop()
// is therefore necessary to shut down the radio. Currently
// mainly benefits the XMAC wrapper that would like to avoid
// a shutdown when in the expected case the radio should stay
// awake.
self.sleep_pending.set(false);
// Just read a packet: if a transmission is pending,
// start the transmission state machine
if self.transmitting.get() {
self.state_transition_read(
RF233Register::TRX_STATUS,
InternalState::TX_STATUS_PRECHECK1,
);
} else {
self.state_transition_read(RF233Register::TRX_STATUS, InternalState::READY);
}
self.rx_client.map(|client| {
let rbuf = self.rx_buf.take().unwrap();
let frame_len = rbuf[1] as usize - radio::MFR_SIZE;
// lqi is currently unimplemented for rf233 and is subsequently hardcoded to zero
client.receive(rbuf.take(), frame_len, 0, self.crc_valid.get(), Ok(()));
});
}
InternalState::CONFIG_SHORT0_SET => {
self.state_transition_write(
RF233Register::SHORT_ADDR_1,
(self.addr.get() >> 8) as u8,
InternalState::CONFIG_SHORT1_SET,
);
}
InternalState::CONFIG_SHORT1_SET => {
self.state_transition_write(
RF233Register::PAN_ID_0,
(self.pan.get() & 0xff) as u8,
InternalState::CONFIG_PAN0_SET,
);
}
InternalState::CONFIG_PAN0_SET => {
self.state_transition_write(
RF233Register::PAN_ID_1,
(self.pan.get() >> 8) as u8,
InternalState::CONFIG_PAN1_SET,
);
}
InternalState::CONFIG_PAN1_SET => {
self.state_transition_write(
RF233Register::IEEE_ADDR_0,
self.addr_long.get()[0],
InternalState::CONFIG_IEEE0_SET,
);
}
InternalState::CONFIG_IEEE0_SET => {
self.state_transition_write(
RF233Register::IEEE_ADDR_1,
self.addr_long.get()[1],
InternalState::CONFIG_IEEE1_SET,
);
}
InternalState::CONFIG_IEEE1_SET => {
self.state_transition_write(
RF233Register::IEEE_ADDR_2,
self.addr_long.get()[2],
InternalState::CONFIG_IEEE2_SET,
);
}
InternalState::CONFIG_IEEE2_SET => {
self.state_transition_write(
RF233Register::IEEE_ADDR_3,
self.addr_long.get()[3],
InternalState::CONFIG_IEEE3_SET,
);
}
InternalState::CONFIG_IEEE3_SET => {
self.state_transition_write(
RF233Register::IEEE_ADDR_4,
self.addr_long.get()[4],
InternalState::CONFIG_IEEE4_SET,
);
}
InternalState::CONFIG_IEEE4_SET => {
self.state_transition_write(
RF233Register::IEEE_ADDR_5,
self.addr_long.get()[5],
InternalState::CONFIG_IEEE5_SET,
);
}
InternalState::CONFIG_IEEE5_SET => {
self.state_transition_write(
RF233Register::IEEE_ADDR_6,
self.addr_long.get()[6],
InternalState::CONFIG_IEEE6_SET,
);
}
InternalState::CONFIG_IEEE6_SET => {
self.state_transition_write(
RF233Register::IEEE_ADDR_7,
self.addr_long.get()[7],
InternalState::CONFIG_IEEE7_SET,
);
}
InternalState::CONFIG_IEEE7_SET => {
let val = power_to_setting(self.tx_power.get());
self.state_transition_write(
RF233Register::PHY_TX_PWR,
val,
InternalState::CONFIG_POWER_SET,
);
}
InternalState::CONFIG_POWER_SET => {
let val = self.channel.get().get_channel_number() | PHY_CC_CCA_MODE_CS_OR_ED;
self.state_transition_write(
RF233Register::PHY_CC_CCA,
val,
InternalState::CONFIG_DONE,
);
}
InternalState::CONFIG_DONE => {
self.config_pending.set(false);
self.state_transition_read(RF233Register::TRX_STATUS, InternalState::READY);
self.cfg_client.map(|c| {
c.config_done(Ok(()));
});
}
}
}
}
impl<'a, S: spi::SpiMasterDevice<'a>> gpio::Client for RF233<'a, S> {
fn fired(&self) {
self.handle_interrupt();
}
}
impl<'a, S: spi::SpiMasterDevice<'a>> RF233<'a, S> {
pub fn new(
spi: &'a S,
spi_buf: &'static mut [u8],
reg_write: &'static mut [u8; SPI_REGISTER_TRANSACTION_LENGTH],
reg_read: &'static mut [u8; SPI_REGISTER_TRANSACTION_LENGTH],
reset: &'a dyn gpio::Pin,
sleep: &'a dyn gpio::Pin,
irq: &'a dyn gpio::InterruptPin<'a>,
channel: radio::RadioChannel,
) -> RF233<'a, S> {
RF233 {
spi,
reset_pin: reset,
sleep_pin: sleep,
irq_pin: irq,
radio_on: Cell::new(false),
transmitting: Cell::new(false),
receiving: Cell::new(false),
spi_busy: Cell::new(false),
crc_valid: Cell::new(false),
state: Cell::new(InternalState::START),
interrupt_handling: Cell::new(false),
interrupt_pending: Cell::new(false),
config_pending: Cell::new(false),
sleep_pending: Cell::new(false),
wake_pending: Cell::new(false),
power_client_pending: Cell::new(false),
tx_buf: MapCell::empty(),
rx_buf: MapCell::empty(),
tx_len: Cell::new(0),
tx_client: OptionalCell::empty(),
rx_client: OptionalCell::empty(),
cfg_client: OptionalCell::empty(),
power_client: OptionalCell::empty(),
addr: Cell::new(0),
addr_long: Cell::new([0x00; 8]),
pan: Cell::new(0),
tx_power: Cell::new(setting_to_power(PHY_TX_PWR)),
channel: Cell::new(channel),
spi_rx: MapCell::new((&mut reg_read[..]).into()),
spi_tx: MapCell::new((&mut reg_write[..]).into()),
spi_buf: MapCell::new(spi_buf.into()),
}
}
fn handle_interrupt(&self) {
// In most cases, the first thing the driver does on handling an interrupt is
// read the IRQ status; this pushes most logic to the SPI handler.
// The one exception is when the radio receives a packet; to prevent this
// packet from being overwritten before reading it from the radio,
// the driver needs to disable reception. This has to be done in the first
// SPI operation.
if !self.spi_busy.get() {
if self.state.get() == InternalState::RX {
// We've received a complete frame; need to disable
// reception until we've read it out from RAM,
// otherwise subsequent packets may corrupt it.
// Dynamic Frame Buffer protection (RF233 manual, Sec
// 11.8) is insufficient because we perform multiple
// SPI operations to read a frame, and the RF233
// releases its protection after the first SPI
// operation.
self.state_transition_write(
RF233Register::TRX_STATE,
RF233TrxCmd::PLL_ON as u8,
InternalState::RX_TURNING_OFF,
);
} else {
self.interrupt_handling.set(true);
let _ = self.register_read(RF233Register::IRQ_STATUS);
}
} else {
self.interrupt_pending.set(true);
}
}
fn register_write(&self, reg: RF233Register, val: u8) -> Result<(), ErrorCode> {
if (self.spi_busy.get() || self.spi_tx.is_none() || self.spi_rx.is_none()) {
return Err(ErrorCode::BUSY);
}
let mut wbuf = self.spi_tx.take().unwrap();
let rbuf = self.spi_rx.take().unwrap();
wbuf[0] = (reg as u8) | RF233BusCommand::REGISTER_WRITE as u8;
wbuf[1] = val;
wbuf.slice(0..2);
// TODO verify SPI return value
let _ = self.spi.read_write_bytes(wbuf, Some(rbuf));
self.spi_busy.set(true);
Ok(())
}
fn register_read(&self, reg: RF233Register) -> Result<(), ErrorCode> {
if (self.spi_busy.get() || self.spi_tx.is_none() || self.spi_rx.is_none()) {
return Err(ErrorCode::BUSY);
}
let mut wbuf = self.spi_tx.take().unwrap();
let rbuf = self.spi_rx.take().unwrap();
wbuf.reset();
wbuf.slice(0..2);
wbuf[0] = (reg as u8) | RF233BusCommand::REGISTER_READ as u8;
wbuf[1] = 0;
// TODO verify SPI return value
let _ = self.spi.read_write_bytes(wbuf, Some(rbuf));
self.spi_busy.set(true);
Ok(())
}
fn frame_write(&self, buf: &'static mut [u8], frame_len: u8) -> Result<(), ErrorCode> {
if self.spi_busy.get() {
return Err(ErrorCode::BUSY);
}
let buf_len = radio::PSDU_OFFSET + frame_len as usize;
buf[0] = RF233BusCommand::FRAME_WRITE as u8;
let mut buf: SubSliceMut<'static, u8> = buf.into();
buf.slice(0..buf_len);
// TODO verify SPI return value
let _ = self.spi.read_write_bytes(buf, self.spi_buf.take());
self.spi_busy.set(true);
Ok(())
}
fn frame_read(&self, buf: &'static mut [u8], frame_len: u8) -> Result<(), ErrorCode> {
if self.spi_busy.get() {
return Err(ErrorCode::BUSY);
}
let buf_len = radio::PSDU_OFFSET + frame_len as usize;
let mut wbuf = self.spi_buf.take().unwrap();
wbuf[0] = RF233BusCommand::FRAME_READ as u8;
wbuf.reset();
wbuf.slice(0..buf_len);
// TODO verify SPI return value
let _ = self.spi.read_write_bytes(wbuf, Some(buf.into()));
self.spi_busy.set(true);
Ok(())
}
fn state_transition_write(&self, reg: RF233Register, val: u8, state: InternalState) {
self.state.set(state);
let _ = self.register_write(reg, val);
}
fn state_transition_read(&self, reg: RF233Register, state: InternalState) {
self.state.set(state);
let _ = self.register_read(reg);
}
}
impl<'a, S: spi::SpiMasterDevice<'a>> radio::RadioConfig<'a> for RF233<'a, S> {
fn initialize(&self) -> Result<(), ErrorCode> {
Ok(())
}
fn reset(&self) -> Result<(), ErrorCode> {
self.spi.configure(
spi::ClockPolarity::IdleLow,
spi::ClockPhase::SampleLeading,
100000,
)?;
self.reset_pin.make_output();
self.sleep_pin.make_output();
for _i in 0..10000 {
self.reset_pin.clear();
}
self.reset_pin.set();
self.sleep_pin.clear();
self.transmitting.set(false);
Ok(())
}
fn start(&self) -> Result<(), ErrorCode> {
self.sleep_pending.set(false);
if self.state.get() != InternalState::START && self.state.get() != InternalState::SLEEP {
return Err(ErrorCode::ALREADY);
}
if self.state.get() == InternalState::SLEEP {
self.state_transition_read(RF233Register::TRX_STATUS, InternalState::SLEEP_WAKE);
} else {
// Delay wakeup until the radio turns all the way off
self.wake_pending.set(true);
let _ = self.register_read(RF233Register::PART_NUM);
}
Ok(())
}
fn stop(&self) -> Result<(), ErrorCode> {
if self.state.get() == InternalState::SLEEP
|| self.state.get() == InternalState::SLEEP_TRX_OFF
{
return Err(ErrorCode::ALREADY);
}
match self.state.get() {
InternalState::READY | InternalState::ON_PLL_WAITING => {
self.radio_on.set(false);
self.state_transition_write(
RF233Register::TRX_STATE,
RF233TrxCmd::OFF as u8,
InternalState::SLEEP_TRX_OFF,
);
}
_ => {
self.sleep_pending.set(true);
}
}
Ok(())
}
fn is_on(&self) -> bool {
self.radio_on.get()
}
fn busy(&self) -> bool {
self.state.get() != InternalState::READY && self.state.get() != InternalState::SLEEP
}
fn set_config_client(&self, client: &'a dyn radio::ConfigClient) {
self.cfg_client.set(client);
}
fn set_power_client(&self, client: &'a dyn radio::PowerClient) {
self.power_client.set(client);
}
fn set_address(&self, addr: u16) {
self.addr.set(addr);
}
fn set_address_long(&self, addr: [u8; 8]) {
self.addr_long.set(addr);
}
fn set_pan(&self, id: u16) {
self.pan.set(id);
}
fn set_tx_power(&self, power: i8) -> Result<(), ErrorCode> {
if (power > 4 || power < -17) {
Err(ErrorCode::INVAL)
} else {
self.tx_power.set(power);
Ok(())
}
}
fn set_channel(&self, chan: radio::RadioChannel) {
self.channel.set(chan);
}
fn get_address(&self) -> u16 {
self.addr.get()
}
fn get_address_long(&self) -> [u8; 8] {
self.addr_long.get()
}
/// The 16-bit PAN ID
fn get_pan(&self) -> u16 {
self.pan.get()
}
/// The transmit power, in dBm
fn get_tx_power(&self) -> i8 {
self.tx_power.get()
}
/// The 802.15.4 channel
fn get_channel(&self) -> u8 {
self.channel.get().get_channel_number()
}
fn config_commit(&self) {
let pending = self.config_pending.get();
if !pending {
self.config_pending.set(true);
let state = self.state.get();
if state == InternalState::READY {
// Start configuration commit
self.state_transition_write(
RF233Register::SHORT_ADDR_0,
(self.addr.get() & 0xff) as u8,
InternalState::CONFIG_SHORT0_SET,
);
} else {
// Do nothing --
// Configuration will be pushed automatically on boot,
// or pending flag will be checked on return to READY
// and commit started
}
}
}
}
impl<'a, S: spi::SpiMasterDevice<'a>> radio::RadioData<'a> for RF233<'a, S> {
fn set_transmit_client(&self, client: &'a dyn radio::TxClient) {
self.tx_client.set(client);
}
fn set_receive_client(&self, client: &'a dyn radio::RxClient) {
self.rx_client.set(client);
}
fn set_receive_buffer(&self, buffer: &'static mut [u8]) {
self.rx_buf.replace(buffer.into());
}
// The payload length is the length of the MAC payload, not the PSDU
fn transmit(
&self,
spi_buf: &'static mut [u8],
frame_len: usize,
) -> Result<(), (ErrorCode, &'static mut [u8])> {
let state = self.state.get();
let frame_len = frame_len + radio::MFR_SIZE;
if !self.radio_on.get() {
return Err((ErrorCode::OFF, spi_buf));
} else if self.tx_buf.is_some() || self.transmitting.get() {
return Err((ErrorCode::BUSY, spi_buf));
} else if radio::PSDU_OFFSET + frame_len >= spi_buf.len() {
// Not enough room for CRC
return Err((ErrorCode::SIZE, spi_buf));
}
// Set PHY header to be the frame length
spi_buf[1] = frame_len as u8;
self.tx_buf.replace(spi_buf.into());
self.tx_len.set(frame_len as u8);
self.transmitting.set(true);
if !self.receiving.get() && state == InternalState::READY {
self.state_transition_read(
RF233Register::TRX_STATUS,
InternalState::TX_STATUS_PRECHECK1,
);
}
Ok(())
}
}