1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Provides userspace with access to proximity sensors.
//!
//! Userspace Interface
//! -------------------
//!
//! ### `subscribe` System Call
//!
//! The `subscribe` system call supports the single `subscribe_number` zero,
//! which is used to provide a callback that will return back the result of
//! a proximity reading.
//! The `subscribe`call return codes indicate the following:
//!
//! * `Ok(())`: the callback been successfully been configured.
//! * `ENOSUPPORT`: Invalid allow_num.
//!
//!
//! ### `command` System Call
//!
//! The `command` system call support one argument `cmd` which is used to specify the specific
//! operation, currently the following cmd's are supported:
//!
//! * `0`: driver existence check
//! * `1`: read proximity
//! * `2`: read proximity on interrupt
//!
//!
//! The possible return from the 'command' system call indicates the following:
//!
//! * `Ok(())`: The operation has been successful.
//! * `BUSY`: The driver is busy.
//! * `ENOSUPPORT`: Invalid `cmd`.
//!
//! Usage
//! -----
//!
//! You need a device that provides the `hil::sensors::ProximityDriver` trait.
//! Here is an example of how to set up a proximity sensor with the apds9960 IC
//!
//! ```rust,ignore
//! # use kernel::static_init;
//!
//!let grant_cap = create_capability!(capabilities::MemoryAllocationCapability);
//!
//!let proximity = static_init!(
//! capsules::proximity::ProximitySensor<'static>,
//! capsules::proximity::ProximitySensor::new(apds9960 , board_kernel.create_grant(&grant_cap)));
//!
//!kernel::hil::sensors::ProximityDriver::set_client(apds9960, proximity);
//! ```
use core::cell::Cell;
use kernel::grant::{AllowRoCount, AllowRwCount, Grant, UpcallCount};
use kernel::hil;
use kernel::syscall::{CommandReturn, SyscallDriver};
use kernel::{ErrorCode, ProcessId};
/// Syscall driver number.
use capsules_core::driver;
pub const DRIVER_NUM: usize = driver::NUM::Proximity as usize;
#[derive(Default)]
pub struct App {
subscribed: bool,
enqueued_command_type: ProximityCommand,
lower_proximity: u8,
upper_proximity: u8,
}
#[derive(Clone, Copy, PartialEq, Default)]
pub enum ProximityCommand {
ReadProximity = 1,
ReadProximityOnInterrupt = 2,
#[default]
NoCommand = 3,
}
#[derive(Default)]
pub struct Thresholds {
lower: u8,
upper: u8,
}
pub struct ProximitySensor<'a> {
driver: &'a dyn hil::sensors::ProximityDriver<'a>,
apps: Grant<App, UpcallCount<1>, AllowRoCount<0>, AllowRwCount<0>>,
command_running: Cell<ProximityCommand>,
}
impl<'a> ProximitySensor<'a> {
pub fn new(
driver: &'a dyn hil::sensors::ProximityDriver<'a>,
grant: Grant<App, UpcallCount<1>, AllowRoCount<0>, AllowRwCount<0>>,
) -> ProximitySensor<'a> {
ProximitySensor {
driver,
apps: grant,
command_running: Cell::new(ProximityCommand::NoCommand),
}
}
fn enqueue_command(
&self,
command: ProximityCommand,
arg1: usize,
arg2: usize,
processid: ProcessId,
) -> CommandReturn {
// Enqueue command by saving command type, args, processid within app struct in grant region
self.apps
.enter(processid, |app, _| {
// Return busy if same app attempts to enqueue second command before first one is "callbacked"
if app.subscribed {
return CommandReturn::failure(ErrorCode::BUSY);
}
if command == ProximityCommand::ReadProximityOnInterrupt {
app.lower_proximity = arg1 as u8;
app.upper_proximity = arg2 as u8;
}
app.subscribed = true; // enqueue
app.enqueued_command_type = command;
// If driver is currently processing a ReadProximityOnInterrupt command then we allow the current ReadProximityOnInterrupt command
// to interrupt it. With new thresholds set, we can account for all apps waiting on ReadProximityOnInterrupt with different thresholds set
// to all receive a callback when appropriate.
// Doing so ensures that the app issuing the current command can have it serviced without having to wait for the previous command to fire.
if (self.command_running.get() == ProximityCommand::ReadProximityOnInterrupt)
&& (command == ProximityCommand::ReadProximityOnInterrupt)
{
let mut t: Thresholds = self.find_thresholds();
if t.lower < app.lower_proximity {
t.lower = app.lower_proximity;
}
if t.upper > app.upper_proximity {
t.upper = app.upper_proximity;
}
let _ = self.driver.read_proximity_on_interrupt(t.lower, t.upper);
self.command_running
.set(ProximityCommand::ReadProximityOnInterrupt);
return CommandReturn::success();
}
// If driver is currently processing a ReadProximityOnInterrupt command and current command is a ReadProximity then
// then command the driver to interrupt the former and replace with the latter. The former will still be in the queue as the app region in the
// grant will have the `subscribed` boolean field set
if (self.command_running.get() == ProximityCommand::ReadProximityOnInterrupt)
&& (command == ProximityCommand::ReadProximity)
{
let _ = self.driver.read_proximity();
self.command_running.set(ProximityCommand::ReadProximity);
return CommandReturn::success();
}
if self.command_running.get() == ProximityCommand::NoCommand {
match app.enqueued_command_type {
ProximityCommand::ReadProximity => {
let _ = self.driver.read_proximity();
}
ProximityCommand::ReadProximityOnInterrupt => {
let mut t: Thresholds = self.find_thresholds();
if t.lower < app.lower_proximity {
t.lower = app.lower_proximity;
}
if t.upper > app.upper_proximity {
t.upper = app.upper_proximity;
}
let _ = self.driver.read_proximity_on_interrupt(t.lower, t.upper);
self.command_running
.set(ProximityCommand::ReadProximityOnInterrupt);
}
ProximityCommand::NoCommand => {}
}
}
CommandReturn::success()
})
.unwrap_or_else(|err| CommandReturn::failure(err.into()))
}
fn run_next_command(&self) -> Result<(), ErrorCode> {
// Find thresholds before entering any grant regions
let t: Thresholds = self.find_thresholds();
// Find and run another command
for cntr in self.apps.iter() {
let break_flag = cntr.enter(|app, _| {
if app.subscribed {
// run it
match app.enqueued_command_type {
ProximityCommand::ReadProximity => {
let _ = self.driver.read_proximity();
self.command_running.set(ProximityCommand::ReadProximity);
}
ProximityCommand::ReadProximityOnInterrupt => {
let _ = self.driver.read_proximity_on_interrupt(t.lower, t.upper);
self.command_running
.set(ProximityCommand::ReadProximityOnInterrupt);
}
ProximityCommand::NoCommand => {}
}
true
} else {
false
}
});
if break_flag {
break;
}
}
Ok(())
}
fn find_thresholds(&self) -> Thresholds {
// Get the lowest upper prox and highest lower prox of all enqueued apps waiting on a readproximityoninterrupt command
// With the IC thresholds set to these two values, we ensure to never miss an interrupt-causing proximity value for any of the
// apps waiting on a proximity interrupt
// Interrupts for thresholds t1,t2 where t1 < t2 are triggered when proximity > t2 or proximity < t1.
let mut highest_lower_proximity: u8 = 0;
let mut lowest_upper_proximity: u8 = 255;
for cntr in self.apps.iter() {
cntr.try_enter(|app, _| {
if (app.lower_proximity > highest_lower_proximity)
&& app.subscribed
&& app.enqueued_command_type == ProximityCommand::ReadProximityOnInterrupt
{
highest_lower_proximity = app.lower_proximity;
}
if (app.upper_proximity < lowest_upper_proximity)
&& app.subscribed
&& app.enqueued_command_type == ProximityCommand::ReadProximityOnInterrupt
{
lowest_upper_proximity = app.upper_proximity;
}
});
}
// return values
Thresholds {
lower: highest_lower_proximity,
upper: lowest_upper_proximity,
}
}
}
impl hil::sensors::ProximityClient for ProximitySensor<'_> {
fn callback(&self, temp_val: u8) {
// Here we callback the values only to the apps which are relevant for the callback
// We also dequeue any command for a callback so as to remove it from the wait list and add other commands to continue
// Schedule callbacks for appropriate apps (any apps waiting for a proximity command)
// For apps waiting on an interrupt, the reading is checked against the upper and lower thresholds of the app's enqueued command
// to notice if this reading will fulfill the app's command.
// The reading is also delivered to any apps waiting on an immediate reading.
for cntr in self.apps.iter() {
cntr.enter(|app, upcalls| {
if app.subscribed {
if app.enqueued_command_type == ProximityCommand::ReadProximityOnInterrupt {
// Case: ReadProximityOnInterrupt
// Only callback to those apps which we expect would want to know about this threshold reading.
if (temp_val > app.upper_proximity) || (temp_val < app.lower_proximity) {
upcalls.schedule_upcall(0, (temp_val as usize, 0, 0)).ok();
app.subscribed = false; // dequeue
}
} else {
// Case: ReadProximity
// Upcall to all apps waiting on read_proximity.
upcalls.schedule_upcall(0, (temp_val as usize, 0, 0)).ok();
app.subscribed = false; // dequeue
}
}
});
}
// No command is temporarily being run here as we have performed the callback for our last command
self.command_running.set(ProximityCommand::NoCommand);
// When we are done with callback (one command) then find another waiting command to run and run it
let _ = self.run_next_command();
}
}
impl SyscallDriver for ProximitySensor<'_> {
fn command(
&self,
command_num: usize,
arg1: usize,
arg2: usize,
processid: ProcessId,
) -> CommandReturn {
match command_num {
// Driver existence check
0 => CommandReturn::success(),
// Instantaneous proximity measurement
1 => self.enqueue_command(ProximityCommand::ReadProximity, arg1, arg2, processid),
// Upcall occurs only after interrupt is fired
2 => self.enqueue_command(
ProximityCommand::ReadProximityOnInterrupt,
arg1,
arg2,
processid,
),
_ => CommandReturn::failure(ErrorCode::NOSUPPORT),
}
}
fn allocate_grant(&self, processid: ProcessId) -> Result<(), kernel::process::Error> {
self.apps.enter(processid, |_, _| {})
}
}