1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Provides userspace with the UART API that the nRF51822 serialization library
//! requires.
//!
//! This capsule handles interfacing with the UART driver, and includes some
//! nuances that keep the Nordic BLE serialization library happy.
//!
//! Usage
//! -----
//!
//! ```rust,ignore
//! # use kernel::{hil, static_init};
//! # use capsules::nrf51822_serialization;
//! # use capsules::nrf51822_serialization::Nrf51822Serialization;
//!
//! let nrf_serialization = static_init!(
//! Nrf51822Serialization<usart::USART>,
//! Nrf51822Serialization::new(&usart::USART3,
//! &mut nrf51822_serialization::WRITE_BUF,
//! &mut nrf51822_serialization::READ_BUF));
//! hil::uart::UART::set_client(&usart::USART3, nrf_serialization);
//! ```
use core::cmp;
use kernel::grant::{AllowRoCount, AllowRwCount, Grant, UpcallCount};
use kernel::hil;
use kernel::hil::uart;
use kernel::processbuffer::{ReadableProcessBuffer, WriteableProcessBuffer};
use kernel::syscall::{CommandReturn, SyscallDriver};
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::{ErrorCode, ProcessId};
/// Syscall driver number.
use capsules_core::driver;
pub const DRIVER_NUM: usize = driver::NUM::Nrf51822Serialization as usize;
/// IDs for subscribed upcalls.
mod upcall {
/// Callback will be called when a TX finishes and when RX data is
/// available.
pub const TX_DONE_RX_READY: usize = 0;
/// Number of upcalls.
pub const COUNT: u8 = 1;
}
/// Ids for read-only allow buffers
mod ro_allow {
/// TX buffer.
///
/// This also sets which app is currently using this driver. Only one app
/// can control the nRF51 serialization driver.
pub const TX: usize = 0;
/// The number of allow buffers the kernel stores for this grant
pub const COUNT: u8 = 1;
}
/// Ids for read-write allow buffers
mod rw_allow {
/// RX buffer.
///
/// This also sets which app is currently using this driver. Only one app
/// can control the nRF51 serialization driver.
pub const RX: usize = 0;
/// The number of allow buffers the kernel stores for this grant
pub const COUNT: u8 = 1;
}
#[derive(Default)]
pub struct App;
// Local buffer for passing data between applications and the underlying
// transport hardware.
pub const WRITE_BUF_LEN: usize = 600;
pub const READ_BUF_LEN: usize = 600;
// We need two resources: a UART HW driver and driver state for each
// application.
pub struct Nrf51822Serialization<'a> {
uart: &'a dyn uart::UartAdvanced<'a>,
reset_pin: &'a dyn hil::gpio::Pin,
apps: Grant<
App,
UpcallCount<{ upcall::COUNT }>,
AllowRoCount<{ ro_allow::COUNT }>,
AllowRwCount<{ rw_allow::COUNT }>,
>,
active_app: OptionalCell<ProcessId>,
tx_buffer: TakeCell<'static, [u8]>,
rx_buffer: TakeCell<'static, [u8]>,
}
impl<'a> Nrf51822Serialization<'a> {
pub fn new(
uart: &'a dyn uart::UartAdvanced<'a>,
grant: Grant<
App,
UpcallCount<{ upcall::COUNT }>,
AllowRoCount<{ ro_allow::COUNT }>,
AllowRwCount<{ rw_allow::COUNT }>,
>,
reset_pin: &'a dyn hil::gpio::Pin,
tx_buffer: &'static mut [u8],
rx_buffer: &'static mut [u8],
) -> Nrf51822Serialization<'a> {
Nrf51822Serialization {
uart,
reset_pin,
apps: grant,
active_app: OptionalCell::empty(),
tx_buffer: TakeCell::new(tx_buffer),
rx_buffer: TakeCell::new(rx_buffer),
}
}
pub fn initialize(&self) {
let _ = self.uart.configure(uart::Parameters {
baud_rate: 250000,
width: uart::Width::Eight,
stop_bits: uart::StopBits::One,
parity: uart::Parity::Even,
hw_flow_control: true,
});
}
pub fn reset(&self) {
self.reset_pin.make_output();
self.reset_pin.clear();
// minimum hold time is 200ns, ~20ns per instruction, so overshoot a bit
for _ in 0..10 {
self.reset_pin.clear();
}
self.reset_pin.set();
}
}
impl SyscallDriver for Nrf51822Serialization<'_> {
/// Issue a command to the Nrf51822Serialization driver.
///
/// ### `command_type`
///
/// - `0`: Driver existence check.
/// - `1`: Send the allowed buffer to the nRF.
/// - `2`: Received from the nRF into the allowed buffer.
/// - `3`: Reset the nRF51822.
fn command(
&self,
command_type: usize,
arg1: usize,
_: usize,
processid: ProcessId,
) -> CommandReturn {
match command_type {
0 => CommandReturn::success(),
// Send a buffer to the nRF51822 over UART.
1 => {
self.apps
.enter(processid, |_, kernel_data| {
kernel_data
.get_readonly_processbuffer(ro_allow::TX)
.and_then(|tx| {
tx.enter(|slice| {
let write_len = slice.len();
self.tx_buffer.take().map_or(
CommandReturn::failure(ErrorCode::FAIL),
|buffer| {
for (i, c) in slice.iter().enumerate() {
buffer[i] = c.get();
}
// Set this as the active app for the transmit callback
self.active_app.set(processid);
let _ = self.uart.transmit_buffer(buffer, write_len);
CommandReturn::success()
},
)
})
})
.unwrap_or(CommandReturn::failure(ErrorCode::FAIL))
})
.unwrap_or(CommandReturn::failure(ErrorCode::FAIL))
}
// Receive from the nRF51822
2 => {
let len = arg1;
// We only allow one app to use the NRF serialization capsule
// (old legacy code, and a difficult thing to virtualize).
// However, we would like to support restarting/updating apps.
// But we don't want to allow a simultaneous app to disrupt the
// app that got to the BLE serialization first. So we have to
// find a compromise.
//
// We handle this by checking if the current active app still
// exists. If it does, we leave it alone. Otherwise, we replace
// it.
self.active_app.map_or_else(
|| {
// The app is not set, handle this for the normal case.
self.rx_buffer.take().map_or(
CommandReturn::failure(ErrorCode::RESERVE),
|buffer| {
if len > buffer.len() {
CommandReturn::failure(ErrorCode::SIZE)
} else {
// Set this as the active app for the
// receive callback.
self.active_app.set(processid);
let _ = self.uart.receive_automatic(buffer, len, 250);
CommandReturn::success_u32(len as u32)
}
},
)
},
|processid| {
// The app is set, check if it still exists.
if let Err(kernel::process::Error::NoSuchApp) =
self.apps.enter(processid, |_, _| {})
{
// The app we had as active no longer exists.
self.active_app.clear();
self.rx_buffer.take().map_or_else(
|| {
// We do not have the RF buffer as it is
// currently in use by the underlying UART.
// We don't have to do anything else except
// update the active app.
self.active_app.set(processid);
CommandReturn::success_u32(len as u32)
},
|buffer| {
if len > buffer.len() {
CommandReturn::failure(ErrorCode::SIZE)
} else {
self.active_app.set(processid);
// Use the buffer to start the receive.
let _ = self.uart.receive_automatic(buffer, len, 250);
CommandReturn::success_u32(len as u32)
}
},
)
} else {
// Active app exists. Return error as there can only
// be one app using this capsule.
CommandReturn::failure(ErrorCode::RESERVE)
}
},
)
}
// Initialize the nRF51822 by resetting it.
3 => {
self.reset();
CommandReturn::success()
}
_ => CommandReturn::failure(ErrorCode::NOSUPPORT),
}
}
fn allocate_grant(&self, processid: ProcessId) -> Result<(), kernel::process::Error> {
self.apps.enter(processid, |_, _| {})
}
}
// Callbacks from the underlying UART driver.
impl uart::TransmitClient for Nrf51822Serialization<'_> {
// Called when the UART TX has finished.
fn transmitted_buffer(
&self,
buffer: &'static mut [u8],
_tx_len: usize,
_rcode: Result<(), ErrorCode>,
) {
self.tx_buffer.replace(buffer);
self.active_app.map(|processid| {
let _ = self.apps.enter(processid, |_app, kernel_data| {
// Call the callback after TX has finished
kernel_data
.schedule_upcall(upcall::TX_DONE_RX_READY, (1, 0, 0))
.ok();
});
});
}
fn transmitted_word(&self, _rcode: Result<(), ErrorCode>) {}
}
impl uart::ReceiveClient for Nrf51822Serialization<'_> {
// Called when a buffer is received on the UART.
fn received_buffer(
&self,
buffer: &'static mut [u8],
rx_len: usize,
_rcode: Result<(), ErrorCode>,
_error: uart::Error,
) {
self.rx_buffer.replace(buffer);
// By default we continuously receive on UART. However, if we receive
// and the active app is no longer existent, then we stop receiving.
let mut repeat_receive = true;
self.active_app.map(|processid| {
if let Err(_err) = self.apps.enter(processid, |_, kernel_data| {
let len = kernel_data
.get_readwrite_processbuffer(rw_allow::RX)
.and_then(|rx| {
rx.mut_enter(|rb| {
// Figure out length to copy.
let max_len = cmp::min(rx_len, rb.len());
// Copy over data to app buffer.
self.rx_buffer.map_or(0, |buffer| {
for idx in 0..max_len {
rb[idx].set(buffer[idx]);
}
max_len
})
})
})
.unwrap_or(0);
// Notify the serialization library in userspace about the
// received buffer.
//
// Note: This indicates how many bytes were received by
// hardware, regardless of how much space (if any) was
// available in the buffer provided by the app.
kernel_data
.schedule_upcall(upcall::TX_DONE_RX_READY, (4, rx_len, len))
.ok();
}) {
// The app we had as active no longer exists. Clear that and
// stop receiving. This puts us back in an idle state. A new app
// can use the BLE serialization.
self.active_app.clear();
repeat_receive = false;
}
});
if repeat_receive {
// Restart the UART receive.
self.rx_buffer.take().map(|buffer| {
let len = buffer.len();
let _ = self.uart.receive_automatic(buffer, len, 250);
});
}
}
fn received_word(&self, _word: u32, _rcode: Result<(), ErrorCode>, _err: uart::Error) {}
}