1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Map arbitrary nonvolatile reads and writes to page operations.
//!
//! This splits non-page-aligned reads and writes into a series of page level
//! reads and writes. While it is handling a read or write it returns `BUSY` to
//! all additional requests.
//!
//! This module is designed to be used on top of any flash storage and below any
//! user of `NonvolatileStorage`. This module handles different sized pages.
//!
//! ```plain
//! hil::nonvolatile_storage::NonvolatileStorage
//! ┌─────────────┐
//! │ │
//! │ This module │
//! │ │
//! └─────────────┘
//! hil::flash::Flash
//! ```
//!
//! Usage
//! -----
//!
//! ```rust,ignore
//! # use kernel::{hil, static_init};
//! sam4l::flashcalw::FLASH_CONTROLLER.configure();
//! let page_buffer = static_init!(
//! sam4l::flashcalw::Sam4lPage,
//! sam4l::flashcalw::Sam4lPage::default()
//! );
//! let nv_to_page = static_init!(
//! capsules::nonvolatile_to_pages::NonvolatileToPages<'static, sam4l::flashcalw::FLASHCALW>,
//! capsules::nonvolatile_to_pages::NonvolatileToPages::new(
//! &mut sam4l::flashcalw::FLASH_CONTROLLER,
//! page_buffer));
//! hil::flash::HasClient::set_client(&sam4l::flashcalw::FLASH_CONTROLLER, nv_to_page);
//! ```
use core::cell::Cell;
use core::cmp;
use kernel::hil;
use kernel::utilities::cells::NumericCellExt;
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::ErrorCode;
/// This module is either waiting to do something, or handling a read/write.
#[derive(Clone, Copy, Debug, PartialEq)]
enum State {
Idle,
Read,
Write,
}
pub struct NonvolatileToPages<'a, F: hil::flash::Flash + 'static> {
/// The module providing a `Flash` interface.
driver: &'a F,
/// Callback to the user of this capsule.
client: OptionalCell<&'a dyn hil::nonvolatile_storage::NonvolatileStorageClient>,
/// Buffer correctly sized for the underlying flash page size.
pagebuffer: TakeCell<'static, F::Page>,
/// Current state of this capsule.
state: Cell<State>,
/// Temporary holding place for the user's buffer.
buffer: TakeCell<'static, [u8]>,
/// Absolute address of where we are reading or writing. This gets updated
/// as the operation proceeds across pages.
address: Cell<usize>,
/// Total length to read or write. We need to store this to return it to the
/// client.
length: Cell<usize>,
/// How many bytes are left to read or write.
remaining_length: Cell<usize>,
/// Where we are in the user buffer.
buffer_index: Cell<usize>,
}
impl<'a, F: hil::flash::Flash> NonvolatileToPages<'a, F> {
pub fn new(driver: &'a F, buffer: &'static mut F::Page) -> NonvolatileToPages<'a, F> {
NonvolatileToPages {
driver,
client: OptionalCell::empty(),
pagebuffer: TakeCell::new(buffer),
state: Cell::new(State::Idle),
buffer: TakeCell::empty(),
address: Cell::new(0),
length: Cell::new(0),
remaining_length: Cell::new(0),
buffer_index: Cell::new(0),
}
}
}
impl<'a, F: hil::flash::Flash> hil::nonvolatile_storage::NonvolatileStorage<'a>
for NonvolatileToPages<'a, F>
{
fn set_client(&self, client: &'a dyn hil::nonvolatile_storage::NonvolatileStorageClient) {
self.client.set(client);
}
fn read(
&self,
buffer: &'static mut [u8],
address: usize,
length: usize,
) -> Result<(), ErrorCode> {
if self.state.get() != State::Idle {
return Err(ErrorCode::BUSY);
}
self.pagebuffer
.take()
.map_or(Err(ErrorCode::RESERVE), move |pagebuffer| {
let page_size = pagebuffer.as_mut().len();
// Just start reading. We'll worry about how much of the page we
// want later.
self.state.set(State::Read);
self.buffer.replace(buffer);
self.address.set(address);
self.length.set(length);
self.remaining_length.set(length);
self.buffer_index.set(0);
match self.driver.read_page(address / page_size, pagebuffer) {
Ok(()) => Ok(()),
Err((error_code, pagebuffer)) => {
self.pagebuffer.replace(pagebuffer);
Err(error_code)
}
}
})
}
fn write(
&self,
buffer: &'static mut [u8],
address: usize,
length: usize,
) -> Result<(), ErrorCode> {
if self.state.get() != State::Idle {
return Err(ErrorCode::BUSY);
}
self.pagebuffer
.take()
.map_or(Err(ErrorCode::RESERVE), move |pagebuffer| {
let page_size = pagebuffer.as_mut().len();
self.state.set(State::Write);
self.length.set(length);
if address % page_size == 0 && length >= page_size {
// This write is aligned to a page and we are writing an entire
// page or more.
// Copy data into page buffer.
pagebuffer.as_mut()[..page_size].copy_from_slice(&buffer[..page_size]);
self.buffer.replace(buffer);
self.address.set(address + page_size);
self.remaining_length.set(length - page_size);
self.buffer_index.set(page_size);
match self.driver.write_page(address / page_size, pagebuffer) {
Ok(()) => Ok(()),
Err((error_code, pagebuffer)) => {
self.pagebuffer.replace(pagebuffer);
Err(error_code)
}
}
} else {
// Need to do a read first.
self.buffer.replace(buffer);
self.address.set(address);
self.remaining_length.set(length);
self.buffer_index.set(0);
match self.driver.read_page(address / page_size, pagebuffer) {
Ok(()) => Ok(()),
Err((error_code, pagebuffer)) => {
self.pagebuffer.replace(pagebuffer);
Err(error_code)
}
}
}
})
}
}
impl<F: hil::flash::Flash> hil::flash::Client<F> for NonvolatileToPages<'_, F> {
fn read_complete(
&self,
pagebuffer: &'static mut F::Page,
_result: Result<(), hil::flash::Error>,
) {
match self.state.get() {
State::Read => {
// OK we got a page from flash. Copy what we actually want from it
// out of it.
self.buffer.take().map(move |buffer| {
let page_size = pagebuffer.as_mut().len();
// This will get us our offset into the page.
let page_index = self.address.get() % page_size;
// Length is either the rest of the page or how much we have left.
let len = cmp::min(page_size - page_index, self.remaining_length.get());
// And where we left off in the user buffer.
let buffer_index = self.buffer_index.get();
// Copy what we read from the page buffer to the user buffer.
buffer[buffer_index..(len + buffer_index)]
.copy_from_slice(&pagebuffer.as_mut()[page_index..(len + page_index)]);
// Decide if we are done.
let new_len = self.remaining_length.get() - len;
if new_len == 0 {
// Nothing more to do. Put things back and issue callback.
self.pagebuffer.replace(pagebuffer);
self.state.set(State::Idle);
self.client
.map(move |client| client.read_done(buffer, self.length.get()));
} else {
// More to do!
self.buffer.replace(buffer);
// Increment all buffer pointers and state.
self.remaining_length.subtract(len);
self.address.add(len);
self.buffer_index.set(buffer_index + len);
if let Err((_, pagebuffer)) = self
.driver
.read_page(self.address.get() / page_size, pagebuffer)
{
self.pagebuffer.replace(pagebuffer);
}
}
});
}
State::Write => {
// We did a read because we're not page aligned on either or
// both ends.
self.buffer.take().map(move |buffer| {
let page_size = pagebuffer.as_mut().len();
// This will get us our offset into the page.
let page_index = self.address.get() % page_size;
// Length is either the rest of the page or how much we have left.
let len = cmp::min(page_size - page_index, self.remaining_length.get());
// And where we left off in the user buffer.
let buffer_index = self.buffer_index.get();
// Which page we read and which we are going to write back to.
let page_number = self.address.get() / page_size;
// Copy what we read from the page buffer to the user buffer.
pagebuffer.as_mut()[page_index..(len + page_index)]
.copy_from_slice(&buffer[buffer_index..(len + buffer_index)]);
// Do the write.
self.buffer.replace(buffer);
self.remaining_length.subtract(len);
self.address.add(len);
self.buffer_index.set(buffer_index + len);
if let Err((_, pagebuffer)) = self.driver.write_page(page_number, pagebuffer) {
self.pagebuffer.replace(pagebuffer);
}
});
}
_ => {}
}
}
fn write_complete(
&self,
pagebuffer: &'static mut F::Page,
_result: Result<(), hil::flash::Error>,
) {
// After a write we could be done, need to do another write, or need to
// do a read.
self.buffer.take().map(move |buffer| {
let page_size = pagebuffer.as_mut().len();
if self.remaining_length.get() == 0 {
// Done!
self.pagebuffer.replace(pagebuffer);
self.state.set(State::Idle);
self.client
.map(move |client| client.write_done(buffer, self.length.get()));
} else if self.remaining_length.get() >= page_size {
// Write an entire page!
let buffer_index = self.buffer_index.get();
let page_number = self.address.get() / page_size;
// Copy data into page buffer.
pagebuffer.as_mut()[..page_size]
.copy_from_slice(&buffer[buffer_index..(page_size + buffer_index)]);
self.buffer.replace(buffer);
self.remaining_length.subtract(page_size);
self.address.add(page_size);
self.buffer_index.set(buffer_index + page_size);
if let Err((_, pagebuffer)) = self.driver.write_page(page_number, pagebuffer) {
self.pagebuffer.replace(pagebuffer);
}
} else {
// Write a partial page!
self.buffer.replace(buffer);
if let Err((_, pagebuffer)) = self
.driver
.read_page(self.address.get() / page_size, pagebuffer)
{
self.pagebuffer.replace(pagebuffer);
}
}
});
}
fn erase_complete(&self, _result: Result<(), hil::flash::Error>) {}
}