1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Provides userspace with virtualized access to 9DOF sensors.
//!
//! Usage
//! -----
//!
//! You need a device that provides the `hil::sensors::NineDof` trait.
//!
//! ```rust,ignore
//! # use kernel::{hil, static_init};
//!
//! let grant_cap = create_capability!(capabilities::MemoryAllocationCapability);
//! let grant_ninedof = board_kernel.create_grant(&grant_cap);
//!
//! let ninedof = static_init!(
//! capsules::ninedof::NineDof<'static>,
//! capsules::ninedof::NineDof::new(grant_ninedof));
//! ninedof.add_driver(fxos8700);
//! hil::sensors::NineDof::set_client(fxos8700, ninedof);
//! ```
use kernel::grant::{AllowRoCount, AllowRwCount, Grant, UpcallCount};
use kernel::hil;
use kernel::syscall::{CommandReturn, SyscallDriver};
use kernel::utilities::cells::OptionalCell;
use kernel::{ErrorCode, ProcessId};
/// Syscall driver number.
use capsules_core::driver;
pub const DRIVER_NUM: usize = driver::NUM::NINEDOF as usize;
#[derive(Clone, Copy, PartialEq)]
pub enum NineDofCommand {
Exists,
ReadAccelerometer,
ReadMagnetometer,
ReadGyroscope,
}
pub struct App {
pending_command: bool,
command: NineDofCommand,
arg1: usize,
}
impl Default for App {
fn default() -> App {
App {
pending_command: false,
command: NineDofCommand::Exists,
arg1: 0,
}
}
}
pub struct NineDof<'a> {
drivers: &'a [&'a dyn hil::sensors::NineDof<'a>],
apps: Grant<App, UpcallCount<1>, AllowRoCount<0>, AllowRwCount<0>>,
current_app: OptionalCell<ProcessId>,
}
impl<'a> NineDof<'a> {
pub fn new(
drivers: &'a [&'a dyn hil::sensors::NineDof<'a>],
grant: Grant<App, UpcallCount<1>, AllowRoCount<0>, AllowRwCount<0>>,
) -> NineDof<'a> {
NineDof {
drivers,
apps: grant,
current_app: OptionalCell::empty(),
}
}
// Check so see if we are doing something. If not,
// go ahead and do this command. If so, this is queued
// and will be run when the pending command completes.
fn enqueue_command(
&self,
command: NineDofCommand,
arg1: usize,
processid: ProcessId,
) -> CommandReturn {
self.apps
.enter(processid, |app, _| {
if self.current_app.is_none() {
self.current_app.set(processid);
let value = self.call_driver(command, arg1);
if value != Ok(()) {
self.current_app.clear();
}
CommandReturn::from(value)
} else {
if app.pending_command {
CommandReturn::failure(ErrorCode::BUSY)
} else {
app.pending_command = true;
app.command = command;
app.arg1 = arg1;
CommandReturn::success()
}
}
})
.unwrap_or_else(|err| {
let rcode: Result<(), ErrorCode> = err.into();
CommandReturn::from(rcode)
})
}
fn call_driver(&self, command: NineDofCommand, _: usize) -> Result<(), ErrorCode> {
match command {
NineDofCommand::ReadAccelerometer => {
let mut data = Err(ErrorCode::NODEVICE);
for driver in self.drivers.iter() {
data = driver.read_accelerometer();
if data == Ok(()) {
break;
}
}
data
}
NineDofCommand::ReadMagnetometer => {
let mut data = Err(ErrorCode::NODEVICE);
for driver in self.drivers.iter() {
data = driver.read_magnetometer();
if data == Ok(()) {
break;
}
}
data
}
NineDofCommand::ReadGyroscope => {
let mut data = Err(ErrorCode::NODEVICE);
for driver in self.drivers.iter() {
data = driver.read_gyroscope();
if data == Ok(()) {
break;
}
}
data
}
_ => Err(ErrorCode::NOSUPPORT),
}
}
}
impl hil::sensors::NineDofClient for NineDof<'_> {
fn callback(&self, arg1: usize, arg2: usize, arg3: usize) {
// Notify the current application that the command finished.
// Also keep track of what just finished to see if we can re-use
// the result.
let mut finished_command = NineDofCommand::Exists;
let mut finished_command_arg = 0;
self.current_app.take().map(|processid| {
let _ = self.apps.enter(processid, |app, upcalls| {
app.pending_command = false;
finished_command = app.command;
finished_command_arg = app.arg1;
upcalls.schedule_upcall(0, (arg1, arg2, arg3)).ok();
});
});
// Check if there are any pending events.
for cntr in self.apps.iter() {
let processid = cntr.processid();
let started_command = cntr.enter(|app, upcalls| {
if app.pending_command
&& app.command == finished_command
&& app.arg1 == finished_command_arg
{
// Don't bother re-issuing this command, just use
// the existing result.
app.pending_command = false;
upcalls.schedule_upcall(0, (arg1, arg2, arg3)).ok();
false
} else if app.pending_command {
app.pending_command = false;
self.current_app.set(processid);
self.call_driver(app.command, app.arg1) == Ok(())
} else {
false
}
});
if started_command {
break;
}
}
}
}
impl SyscallDriver for NineDof<'_> {
fn command(
&self,
command_num: usize,
arg1: usize,
_: usize,
processid: ProcessId,
) -> CommandReturn {
match command_num {
0 => CommandReturn::success(),
// Single acceleration reading.
1 => self.enqueue_command(NineDofCommand::ReadAccelerometer, arg1, processid),
// Single magnetometer reading.
100 => self.enqueue_command(NineDofCommand::ReadMagnetometer, arg1, processid),
// Single gyroscope reading.
200 => self.enqueue_command(NineDofCommand::ReadGyroscope, arg1, processid),
_ => CommandReturn::failure(ErrorCode::NOSUPPORT),
}
}
fn allocate_grant(&self, processid: ProcessId) -> Result<(), kernel::process::Error> {
self.apps.enter(processid, |_, _| {})
}
}