1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! This file contains the interface definition for sending an IPv6 packet.
//! The [IP6Sender](trait.IP6Sender.html) trait provides an interface
//! for sending IPv6 packets, while the [IP6SendClient](trait.IP6SendClient) trait
//! must be implemented by upper layers to receive the `send_done` callback
//! when a transmission has completed.
//!
//! This file also includes an implementation of the `IP6Sender` trait, which
//! sends an IPv6 packet using 6LoWPAN.
// Additional Work and Known Problems
// ----------------------------------
// The main areas for additional work is with regards to the interface provided
// by `IP6Sender`. The current interface differs from the one provided in
// the networking stack overview document, and should be changed to better
// reflect that document. Additionally, the specific implementation is
// over 6LoWPAN, and should be separated from the generic IPv6 sending
// interface.
use crate::ieee802154::device::{MacDevice, TxClient};
use crate::net::ieee802154::MacAddress;
use crate::net::ipv6::ip_utils::IPAddr;
use crate::net::ipv6::{IP6Header, IP6Packet, TransportHeader};
use crate::net::network_capabilities::{IpVisibilityCapability, NetworkCapability};
use crate::net::sixlowpan::sixlowpan_state::TxState;
use crate::net::thread::thread_utils::{mac_from_ipv6, MULTICAST_IPV6};
use core::cell::Cell;
use kernel::debug;
use kernel::hil::time::{self, ConvertTicks};
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::utilities::leasable_buffer::SubSliceMut;
use kernel::ErrorCode;
/// This trait must be implemented by upper layers in order to receive
/// the `send_done` callback when a transmission has completed. The upper
/// layer must then call `IP6Sender.set_client` in order to receive this
/// callback.
pub trait IP6SendClient {
fn send_done(&self, result: Result<(), ErrorCode>);
}
/// This trait provides a basic IPv6 sending interface. It exposes basic
/// configuration information for the IPv6 layer (setting the source address,
/// setting the gateway MAC address), as well as a way to send an IPv6
/// packet.
pub trait IP6Sender<'a> {
/// This method sets the `IP6SendClient` for the `IP6Sender` instance, which
/// receives the `send_done` callback when transmission has finished.
///
/// # Arguments
/// `client` - Client that implements the `IP6SendClient` trait to receive the
/// `send_done` callback
fn set_client(&self, client: &'a dyn IP6SendClient);
/// This method sets the source address for packets sent from the
/// `IP6Sender` instance.
///
/// # Arguments
/// `src_addr` - `IPAddr` to set as the source address for packets sent
/// from this instance of `IP6Sender`
fn set_addr(&self, src_addr: IPAddr);
/// This method sets the gateway/next hop MAC address for this `IP6Sender`
/// instance.
///
/// # Arguments
/// `gateway` - MAC address to send the constructed packet to
fn set_gateway(&self, gateway: MacAddress);
/// This method sets the `IP6Header` for the `IP6Sender` instance
///
/// # Arguments
/// `ip6_header` - New `IP6Header` that subsequent packets sent via this
/// `IP6Sender` instance will use
fn set_header(&mut self, ip6_header: IP6Header);
/// This method sends the provided transport header and payload to the
/// given destination IP address
///
/// # Arguments
/// `dst` - IPv6 address to send the packet to
/// `transport_header` - The `TransportHeader` for the packet being sent
/// `payload` - The transport payload for the packet being sent
fn send_to(
&self,
dst: IPAddr,
transport_header: TransportHeader,
payload: &SubSliceMut<'static, u8>,
net_cap: &'static NetworkCapability,
) -> Result<(), ErrorCode>;
}
/// This struct is a specific implementation of the `IP6Sender` trait. This
/// struct sends the packet using 6LoWPAN over a generic `MacDevice` object.
pub struct IP6SendStruct<'a, A: time::Alarm<'a>> {
// We want the ip6_packet field to be a TakeCell so that it is easy to mutate
ip6_packet: TakeCell<'static, IP6Packet<'static>>,
alarm: &'a A, // Alarm so we can introduce a small delay between fragments to ensure
// successful reception on receivers with slow copies out of the radio buffer
// (imix)
src_addr: Cell<IPAddr>,
gateway: Cell<MacAddress>,
tx_buf: TakeCell<'static, [u8]>,
sixlowpan: TxState<'a>,
radio: &'a dyn MacDevice<'a>,
dst_mac_addr: MacAddress,
src_mac_addr: MacAddress,
client: OptionalCell<&'a dyn IP6SendClient>,
ip_vis: &'static IpVisibilityCapability,
}
impl<'a, A: time::Alarm<'a>> IP6Sender<'a> for IP6SendStruct<'a, A> {
fn set_client(&self, client: &'a dyn IP6SendClient) {
self.client.set(client);
}
fn set_addr(&self, src_addr: IPAddr) {
self.src_addr.set(src_addr);
}
fn set_gateway(&self, gateway: MacAddress) {
self.gateway.set(gateway);
}
fn set_header(&mut self, ip6_header: IP6Header) {
self.ip6_packet
.map(|ip6_packet| ip6_packet.header = ip6_header);
}
fn send_to(
&self,
dst: IPAddr,
transport_header: TransportHeader,
payload: &SubSliceMut<'static, u8>,
net_cap: &'static NetworkCapability,
) -> Result<(), ErrorCode> {
if !net_cap.remote_addr_valid(dst, self.ip_vis) {
return Err(ErrorCode::FAIL);
}
// This logic is used to update the dst mac address
// the given packet should be sent to. This complies
// with the manner in which Thread addresses packets,
// but may conflict with some other or future protocol
// that sits above and uses IPV6
let dst_mac_addr;
if dst == MULTICAST_IPV6 {
// use short multicast ipv6 for dst mac address
dst_mac_addr = MacAddress::Short(0xFFFF)
} else if dst.0[0..8] == [0xfe, 0x80, 0, 0, 0, 0, 0, 0] {
// ipv6 address is of form fe80::MAC; use mac_from_ipv6
// helper function to determine ipv6 to send to
dst_mac_addr = MacAddress::Long(mac_from_ipv6(dst))
} else {
dst_mac_addr = self.dst_mac_addr;
}
// TODO: add error handling here
let _ = self
.sixlowpan
.init(self.src_mac_addr, dst_mac_addr, self.radio.get_pan(), None);
self.init_packet(dst, transport_header, payload);
let ret = self.send_next_fragment();
ret
}
}
impl<'a, A: time::Alarm<'a>> IP6SendStruct<'a, A> {
pub fn new(
ip6_packet: &'static mut IP6Packet<'static>,
alarm: &'a A,
tx_buf: &'static mut [u8],
sixlowpan: TxState<'a>,
radio: &'a dyn MacDevice<'a>,
dst_mac_addr: MacAddress,
src_mac_addr: MacAddress,
ip_vis: &'static IpVisibilityCapability,
) -> IP6SendStruct<'a, A> {
IP6SendStruct {
ip6_packet: TakeCell::new(ip6_packet),
alarm,
src_addr: Cell::new(IPAddr::new()),
gateway: Cell::new(dst_mac_addr),
tx_buf: TakeCell::new(tx_buf),
sixlowpan,
radio,
dst_mac_addr,
src_mac_addr,
client: OptionalCell::empty(),
ip_vis,
}
}
fn init_packet(
&self,
dst_addr: IPAddr,
transport_header: TransportHeader,
payload: &SubSliceMut<'static, u8>,
) {
self.ip6_packet.map_or_else(
|| {
debug!("init packet failed.");
},
|ip6_packet| {
ip6_packet.header = IP6Header::default();
ip6_packet.header.src_addr = self.src_addr.get();
ip6_packet.header.dst_addr = dst_addr;
ip6_packet.set_payload(transport_header, payload);
ip6_packet.set_transport_checksum();
},
);
}
// Returns BUSY if the tx_buf is not there
fn send_next_fragment(&self) -> Result<(), ErrorCode> {
// Originally send_complete() was called within the below closure.
// However, this led to a race condition where when multiple apps transmitted
// simultaneously, it was possible for send_complete to trigger another
// transmission before the below closure would exit, leading to this function
// being called again by another app before ip6_packet is replaced.
// To fix this, we pass a bool out of the closure to indicate whether send_completed()
// should be called once the closure exits
let (ret, call_send_complete) = self
.ip6_packet
.map(move |ip6_packet| match self.tx_buf.take() {
Some(tx_buf) => {
let next_frame = self.sixlowpan.next_fragment(ip6_packet, tx_buf, self.radio);
match next_frame {
Ok((is_done, frame)) => {
if is_done {
self.tx_buf.replace(frame.into_buf());
//self.send_completed(Ok(()));
(Ok(()), true)
} else {
match self.radio.transmit(frame) {
Ok(()) => (Ok(()), false),
Err((ecode, _buf)) => (Err(ecode), false),
}
}
}
Err((retcode, buf)) => {
self.tx_buf.replace(buf);
//self.send_completed(retcode);
(retcode, true)
}
}
}
None => {
debug!("Missing tx_buf");
(Err(ErrorCode::BUSY), false)
}
})
.unwrap_or((Err(ErrorCode::NOMEM), false));
if call_send_complete {
self.send_completed(ret);
return Ok(());
}
ret
}
fn send_completed(&self, result: Result<(), ErrorCode>) {
self.client.map(move |client| {
client.send_done(result);
});
}
}
impl<'a, A: time::Alarm<'a>> time::AlarmClient for IP6SendStruct<'a, A> {
fn alarm(&self) {
let result = self.send_next_fragment();
if result != Ok(()) {
self.send_completed(result);
}
}
}
impl<'a, A: time::Alarm<'a>> TxClient for IP6SendStruct<'a, A> {
fn send_done(&self, tx_buf: &'static mut [u8], acked: bool, result: Result<(), ErrorCode>) {
self.tx_buf.replace(tx_buf);
if result != Ok(()) {
debug!("Send Failed: {:?}, acked: {}", result, acked);
self.client.map(move |client| {
client.send_done(result);
});
} else {
// Below code adds delay between fragments. Despite some efforts
// to fix this bug, I find that without it the receiving imix cannot
// receive more than 2 fragments in a single packet without hanging
// waiting for the third fragments.
// Specifically, here we set a timer, which fires and sends the next fragment
// One flaw with this is that we also introduce a delay after sending the last
// fragment, before passing the send_done callback back to the client. This
// could be optimized by checking if it is the last fragment before setting the timer.
self.alarm
.set_alarm(self.alarm.now(), self.alarm.ticks_from_ms(100));
}
}
}