1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! This file contains structs, traits, and methods associated with the IP layer
//! of the networking stack. This includes the declaration and methods for the
//! IP6Header, IP6Packet, and IP6Payload structs. These methods implement the
//! bulk of the functionality required for manipulating the fields of the
//! IPv6 header. Additionally, the IP6Packet struct allows for multiple types
//! of transport-level structures to be encapsulated within.
//!
//! An implementation for the structure of an IPv6 packet is provided by this
//! file, and a rough outline is given below:
//!
//! ```txt
//! ----------------------------------------------
//! | IP6Packet |
//! |--------------------------------------------|
//! | | IPPayload |
//! | IP6Header |--------------------------|
//! | |TransportHeader | Payload |
//! ----------------------------------------------
//! ```
//!
//! The [IP6Packet](struct.IP6Packet.html) struct contains an
//! [IP6Header](struct.IP6Header.html) struct and an
//! [IPPayload](struct.IPPayload.html) struct, with the `IPPayload` struct
//! also containing a [TransportHeader](enum.TransportHeader.html) enum and
//! a `Payload` buffer. Note that transport-level headers are contained inside
//! the `TransportHeader`.
//!
//! For a client interested in using this interface, they first statically
//! allocate an `IP6Packet` struct, then set the appropriate headers and
//! payload using the functions defined for the different structs. These
//! methods are described in greater detail below.
// Discussion of Design Decisions
// ------------------------------
// Although still a work-in-progress, the IPv6 layer is quite complicated, and
// this initial interface represents some of the compromises made in trying
// to design a memory efficient, modular IP layer. The primary decision made
// for the IPv6 layer was the design of the `IP6Packet` struct. We noticed
// that the mutable payload buffer should always be associated with some type
// of headers; that is, we noticed that the payload for an IP packet should
// be perminantly owned by an instance of an IPv6 packet. This avoids runtime
// checks, as Rust can guarantee that the payload for an IPv6 packet is always
// there, as it cannot be moved. In order to facilitate this design while still
// allowing for (somewhat) arbitrary transport-level headers, we needed to
// separate out the `TransportHeader` enum from the payload itself. Since
// we did not want the IP layer to always have to have knowledge of/deal with
// the transport-level header, we decided to add an intermediate `IPPayload`
// struct, which encapsulated the `TransportHeader` and associated payload.
//
// Known Problems and Remaining Work
// ---------------------------------
// This layer is still in the early stages of implementation, and both the
// interfaces and underlying code will change substantially. There are two main
// areas of focus for additional work: 1) ensuring that the IP6Packet/IP6Header/
// IPPayload design makes sense and is properly layered, and 2) figuring out
// and implementing a receive path that uses this encapsulation.
//
// One of the primary problems with the current encapsulation design is that
// it is impossible to encode recursive headers - any subsequent headers (IPv6
// or transport) must be serialized and carried in the raw payload. This may
// be avoided with references and allocation, but since we do not have
// a memory allocator we could not allocate all possible headers at compile
// time. Additionally, we couldn't just allocate headers "as-needed" on the
// stack, as the network send interface is asynchronous, so anything allocated
// on the stack would eventually be popped/disappear. Although this is not
// a major problem in general, it makes handling encapsulated IPv6 packets
// (as required by 6LoWPAN) difficult.
use crate::net::icmpv6::ICMP6Header;
use crate::net::ipv6::ip_utils::{compute_icmp_checksum, compute_udp_checksum, ip6_nh, IPAddr};
use crate::net::stream::SResult;
use crate::net::stream::{decode_bytes, decode_u16, decode_u8};
use crate::net::stream::{encode_bytes, encode_u16, encode_u8};
use crate::net::tcp::TCPHeader;
use crate::net::udp::UDPHeader;
use kernel::utilities::leasable_buffer::SubSliceMut;
use kernel::ErrorCode;
pub const UDP_HDR_LEN: usize = 8;
pub const ICMP_HDR_LEN: usize = 8;
/// This is the struct definition for an IPv6 header. It contains (in order)
/// the same fields as a normal IPv6 header.
#[repr(C, packed)]
#[derive(Copy, Clone)]
pub struct IP6Header {
pub version_class_flow: [u8; 4],
pub payload_len: u16,
pub next_header: u8,
pub hop_limit: u8,
pub src_addr: IPAddr,
pub dst_addr: IPAddr,
}
impl Default for IP6Header {
fn default() -> IP6Header {
let version = 0x60;
let hop_limit = 255;
IP6Header {
version_class_flow: [version, 0, 0, 0],
payload_len: 0,
next_header: ip6_nh::NO_NEXT,
hop_limit,
src_addr: IPAddr::new(),
dst_addr: IPAddr::new(),
}
}
}
impl IP6Header {
/// This function returns an IP6Header struct initialized to the default
/// values.
pub fn new() -> IP6Header {
IP6Header::default()
}
/// This function is used to transform a raw buffer into an IP6Header
/// struct. This is useful for deserializing a header upon reception.
///
/// # Arguments
///
/// `buf` - The serialized version of an IPv6 header
///
/// # Return Value
///
/// `SResult<IP6Header>` - The resulting decoded IP6Header struct wrapped
/// in an SResult
pub fn decode(buf: &[u8]) -> SResult<IP6Header> {
// TODO: Let size of header be a constant
stream_len_cond!(buf, 40);
let mut ip6_header = Self::new();
// Note that `dec_consume!` uses the length of the output buffer to
// determine how many bytes are to be read.
let off = dec_consume!(buf, 0; decode_bytes, &mut ip6_header.version_class_flow);
let (off, payload_len_be) = dec_try!(buf, off; decode_u16);
ip6_header.payload_len = u16::from_be(payload_len_be);
let (off, next_header) = dec_try!(buf, off; decode_u8);
ip6_header.next_header = next_header;
let (off, hop_limit) = dec_try!(buf, off; decode_u8);
ip6_header.hop_limit = hop_limit;
let off = dec_consume!(buf, off; decode_bytes, &mut ip6_header.src_addr.0);
let off = dec_consume!(buf, off; decode_bytes, &mut ip6_header.dst_addr.0);
stream_done!(off, ip6_header);
}
/// This function transforms the `self` instance of an IP6Header into a
/// byte array
///
/// # Arguments
///
/// `buf` - A mutable array where the serialized version of the IP6Header
/// struct is written to
///
/// # Return Value
///
/// `SResult<usize>` - The offset wrapped in an SResult
pub fn encode(&self, buf: &mut [u8]) -> SResult<usize> {
stream_len_cond!(buf, 40);
let mut off = enc_consume!(buf, 0; encode_bytes, &self.version_class_flow);
off = enc_consume!(buf, off; encode_u16, self.payload_len.to_be());
off = enc_consume!(buf, off; encode_u8, self.next_header);
off = enc_consume!(buf, off; encode_u8, self.hop_limit);
off = enc_consume!(buf, off; encode_bytes, &self.src_addr.0);
off = enc_consume!(buf, off; encode_bytes, &self.dst_addr.0);
stream_done!(off, off);
}
pub fn get_src_addr(&self) -> IPAddr {
self.src_addr
}
pub fn get_dst_addr(&self) -> IPAddr {
self.dst_addr
}
// Version should always be 6
pub fn get_version(&self) -> u8 {
(self.version_class_flow[0] & 0xf0) >> 4
}
pub fn get_traffic_class(&self) -> u8 {
(self.version_class_flow[0] & 0x0f) << 4 | (self.version_class_flow[1] & 0xf0) >> 4
}
pub fn set_traffic_class(&mut self, new_tc: u8) {
self.version_class_flow[0] &= 0xf0;
self.version_class_flow[0] |= (new_tc & 0xf0) >> 4;
self.version_class_flow[1] &= 0x0f;
self.version_class_flow[1] |= (new_tc & 0x0f) << 4;
}
fn get_dscp_unshifted(&self) -> u8 {
self.get_traffic_class() & 0b11111100
}
pub fn get_dscp(&self) -> u8 {
self.get_dscp_unshifted() >> 2
}
pub fn set_dscp(&mut self, new_dscp: u8) {
let ecn = self.get_ecn();
self.set_traffic_class(ecn | ((new_dscp << 2) & 0b11111100));
}
pub fn get_ecn(&self) -> u8 {
self.get_traffic_class() & 0b11
}
pub fn set_ecn(&mut self, new_ecn: u8) {
let dscp_unshifted = self.get_dscp_unshifted();
self.set_traffic_class(dscp_unshifted | (new_ecn & 0b11));
}
// This returns the flow label as the lower 20 bits of a u32
pub fn get_flow_label(&self) -> u32 {
let mut flow_label: u32 = 0;
flow_label |= ((self.version_class_flow[1] & 0x0f) as u32) << 16;
flow_label |= (self.version_class_flow[2] as u32) << 8;
flow_label |= self.version_class_flow[3] as u32;
flow_label
}
pub fn set_flow_label(&mut self, new_fl_val: u32) {
self.version_class_flow[1] &= 0xf0;
self.version_class_flow[1] |= ((new_fl_val >> 16) & 0x0f) as u8;
self.version_class_flow[2] = (new_fl_val >> 8) as u8;
self.version_class_flow[3] = new_fl_val as u8;
}
pub fn get_payload_len(&self) -> u16 {
u16::from_be(self.payload_len)
}
// TODO: 40 = size of IP6header - find idiomatic way to compute
pub fn get_total_len(&self) -> u16 {
40 + self.get_payload_len()
}
pub fn set_payload_len(&mut self, new_len: u16) {
self.payload_len = new_len.to_be();
}
pub fn get_next_header(&self) -> u8 {
self.next_header
}
pub fn set_next_header(&mut self, new_nh: u8) {
self.next_header = new_nh;
}
pub fn get_hop_limit(&self) -> u8 {
self.hop_limit
}
pub fn set_hop_limit(&mut self, new_hl: u8) {
self.hop_limit = new_hl;
}
/// Utility function for verifying whether a transport layer checksum of a received
/// packet is correct. Is called on the assocaite IPv6 Header, and passed the buffer
/// containing the remainder of the packet.
pub fn check_transport_checksum(&self, buf: &[u8]) -> Result<(), ErrorCode> {
match self.next_header {
ip6_nh::UDP => {
let mut udp_header: [u8; UDP_HDR_LEN] = [0; UDP_HDR_LEN];
udp_header.copy_from_slice(&buf[..UDP_HDR_LEN]);
let checksum = match UDPHeader::decode(&udp_header).done() {
Some((_offset, hdr)) => u16::from_be(compute_udp_checksum(
self,
&hdr,
buf.len() as u16,
&buf[UDP_HDR_LEN..],
)),
None => 0xffff, //Will be dropped, as ones comp -0 checksum is invalid
};
if checksum != 0 {
return Err(ErrorCode::FAIL); //Incorrect cksum
}
Ok(())
}
ip6_nh::ICMP => {
// Untested (10/5/18)
let mut icmp_header: [u8; ICMP_HDR_LEN] = [0; ICMP_HDR_LEN];
icmp_header.copy_from_slice(&buf[..ICMP_HDR_LEN]);
let checksum = match ICMP6Header::decode(&icmp_header).done() {
Some((_offset, mut hdr)) => {
hdr.set_len(buf.len() as u16);
u16::from_be(compute_icmp_checksum(self, &hdr, &buf[ICMP_HDR_LEN..]))
}
None => 0xffff, //Will be dropped, as ones comp -0 checksum is invalid
};
if checksum != 0 {
return Err(ErrorCode::FAIL); //Incorrect cksum
}
Ok(())
}
_ => Err(ErrorCode::NOSUPPORT),
}
}
}
/// This defines the currently supported `TransportHeader` types. The contents
/// of each header is encapsulated by the enum type. Note that this definition
/// of `TransportHeader`s means that recursive headers are not supported.
/// As of now, there is no support for sending raw IP packets without a transport header.
/// Currently we accept the overhead of copying these structs in/out of an OptionalCell
/// in `udp_send.rs`.
#[derive(Copy, Clone)]
pub enum TransportHeader {
UDP(UDPHeader),
TCP(TCPHeader),
ICMP(ICMP6Header),
}
/// The `IPPayload` struct contains a `TransportHeader` and a mutable buffer
/// (the payload).
pub struct IPPayload<'a> {
pub header: TransportHeader,
pub payload: &'a mut [u8],
}
impl<'a> IPPayload<'a> {
/// This function constructs a new `IPPayload` struct
///
/// # Arguments
///
/// `header` - A `TransportHeader` for the `IPPayload`
/// `payload` - A reference to a mutable buffer for the raw payload
pub fn new(header: TransportHeader, payload: &'a mut [u8]) -> IPPayload<'a> {
IPPayload { header, payload }
}
/// This function sets the payload for the `IPPayload`, and sets both the
/// TransportHeader and copies the provided payload buffer.
///
/// # Arguments
///
/// `transport_header` - The new `TransportHeader` header for the payload
/// `payload` - The payload to be copied into the `IPPayload`
///
/// # Return Value
///
/// `(u8, u16)` - Returns a tuple of the `ip6_nh` type of the
/// `transport_header` and the total length of the `IPPayload`
/// (when serialized)
pub fn set_payload(
&mut self,
transport_header: TransportHeader,
payload: &SubSliceMut<'static, u8>,
) -> (u8, u16) {
for i in 0..payload.len() {
self.payload[i] = payload[i];
}
match transport_header {
TransportHeader::UDP(mut udp_header) => {
let length = (payload.len() + udp_header.get_hdr_size()) as u16;
udp_header.set_len(length);
self.header = transport_header;
(ip6_nh::UDP, length)
}
TransportHeader::ICMP(mut icmp_header) => {
let length = (payload.len() + icmp_header.get_hdr_size()) as u16;
icmp_header.set_len(length);
self.header = transport_header;
(ip6_nh::ICMP, length)
}
_ => (ip6_nh::NO_NEXT, payload.len() as u16),
}
}
/// This function encodes the `IPPayload` as a byte array
///
/// # Arguments
///
/// `buf` - SubSliceMut to write the serialized `IPPayload` to
/// `offset` - Current offset into the buffer
///
/// # Return Value
///
/// `SResult<usize>` - The final offset into the buffer `buf` is returned
/// wrapped in an SResult
pub fn encode(&self, buf: &mut [u8], offset: usize) -> SResult<usize> {
let (offset, _) = match self.header {
TransportHeader::UDP(udp_header) => udp_header.encode(buf, offset).done().unwrap(),
TransportHeader::ICMP(icmp_header) => icmp_header.encode(buf, offset).done().unwrap(),
_ => {
unimplemented!();
}
};
let payload_length = self.get_payload_length();
let offset = enc_consume!(buf, offset; encode_bytes, &self.payload[..payload_length]);
stream_done!(offset, offset)
}
fn get_payload_length(&self) -> usize {
match self.header {
TransportHeader::UDP(udp_header) => {
udp_header.get_len() as usize - udp_header.get_hdr_size()
}
TransportHeader::ICMP(icmp_header) => {
icmp_header.get_len() as usize - icmp_header.get_hdr_size()
}
_ => {
unimplemented!();
}
}
}
}
/// This struct defines the `IP6Packet` format, and contains an `IP6Header`
/// and an `IPPayload`.
pub struct IP6Packet<'a> {
pub header: IP6Header,
pub payload: IPPayload<'a>,
}
// Note: We want to have the IP6Header struct implement these methods,
// as there are cases where we want to allocate/modify the IP6Header without
// allocating/modifying the entire IP6Packet
impl<'a> IP6Packet<'a> {
// Sets fields to appropriate defaults
/// This function returns a new `IP6Packet` struct. Note that the
/// `IP6Packet.header` field is set to `IP6Header::default()`
///
/// # Arguments
///
/// `payload` - The `IPPayload` struct for the `IP6Packet`
pub fn new(payload: IPPayload<'a>) -> IP6Packet<'a> {
IP6Packet {
header: IP6Header::default(),
payload,
}
}
pub fn reset(&mut self) {
self.header = IP6Header::default();
}
pub fn get_total_len(&self) -> u16 {
40 + self.header.get_payload_len()
}
pub fn get_payload(&self) -> &[u8] {
self.payload.payload
}
pub fn get_total_hdr_size(&self) -> usize {
let transport_hdr_size = match self.payload.header {
TransportHeader::UDP(udp_hdr) => udp_hdr.get_hdr_size(),
TransportHeader::ICMP(icmp_header) => icmp_header.get_hdr_size(),
_ => unimplemented!(),
};
40 + transport_hdr_size
}
pub fn set_transport_checksum(&mut self) {
// Looks at internal buffer assuming
// it contains a valid IP packet, checks the payload type. If the payload
// type requires a cksum calculation, this function calculates the
// psuedoheader cksum and calls the appropriate transport packet function
// using this pseudoheader cksum to set the transport packet cksum
match self.payload.header {
TransportHeader::UDP(ref mut udp_header) => {
let cksum = compute_udp_checksum(
&self.header,
udp_header,
udp_header.get_len(),
self.payload.payload,
);
udp_header.set_cksum(cksum);
}
TransportHeader::ICMP(ref mut icmp_header) => {
let cksum = compute_icmp_checksum(&self.header, icmp_header, self.payload.payload);
icmp_header.set_cksum(cksum);
}
_ => {
unimplemented!();
}
}
}
/// This function should be the function used to set the payload for a
/// given `IP6Packet` object. It first calls the `IPPayload::set_payload`
/// method to set the transport header and transport payload, which then
/// returns the `ip6_nh` value for the `TransportHeader` and the length of
/// the serialized `IPPayload` region. This function then sets the
/// `IP6Header` next header field correctly. **Without using this function,
/// the `IP6Header.next_header` field may not agree with the actual
/// next header (`IP6Header.payload.header`)**
///
/// # Arguments
///
/// `transport_header` - The `TransportHeader` to be set as the next header
/// `payload` - The transport payload to be copied into the `IPPayload`
/// transport payload
pub fn set_payload(
&mut self,
transport_header: TransportHeader,
payload: &SubSliceMut<'static, u8>,
) {
let (next_header, payload_len) = self.payload.set_payload(transport_header, payload);
self.header.set_next_header(next_header);
self.header.set_payload_len(payload_len);
}
// TODO: Do we need a decode equivalent? I don't think so, but we might
pub fn encode(&self, buf: &mut [u8]) -> SResult<usize> {
let ip6_header = self.header;
// TODO: Handle unwrap safely
let (off, _) = ip6_header.encode(buf).done().unwrap();
self.payload.encode(buf, off)
}
}