1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! SyscallDriver for the ISL29035 digital light sensor.
//!
//! <http://bit.ly/2rA00cH>
//!
//! > The ISL29035 is an integrated ambient and infrared light-to-digital
//! > converter with I2C (SMBus compatible) Interface. Its advanced self-
//! > calibrated photodiode array emulates human eye response with excellent IR
//! > rejection. The on-chip ADC is capable of rejecting 50Hz and 60Hz flicker
//! > caused by artificial light sources. The Lux range select feature allows
//! > users to program the Lux range for optimized counts/Lux.
//!
//! Usage
//! -----
//!
//! ```rust,ignore
//! # use kernel::static_init;
//! # use capsules::virtual_alarm::VirtualMuxAlarm;
//!
//! let isl29035_i2c = static_init!(I2CDevice, I2CDevice::new(i2c_bus, 0x44));
//! let isl29035_virtual_alarm = static_init!(
//! VirtualMuxAlarm<'static, sam4l::ast::Ast>,
//! VirtualMuxAlarm::new(mux_alarm));
//! isl29035_virtual_alarm.setup();
//!
//! let isl29035 = static_init!(
//! capsules::isl29035::Isl29035<'static, VirtualMuxAlarm<'static, sam4l::ast::Ast>>,
//! capsules::isl29035::Isl29035::new(isl29035_i2c, isl29035_virtual_alarm,
//! &mut capsules::isl29035::BUF));
//! isl29035_i2c.set_client(isl29035);
//! isl29035_virtual_alarm.set_client(isl29035);
//! ```
use core::cell::Cell;
use kernel::hil::i2c::{Error, I2CClient, I2CDevice};
use kernel::hil::sensors::{AmbientLight, AmbientLightClient};
use kernel::hil::time::{self, ConvertTicks};
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::ErrorCode;
/// Recommended buffer length.
pub const BUF_LEN: usize = 3;
#[derive(Copy, Clone, PartialEq)]
enum State {
Disabled,
Enabling,
Integrating,
ReadingLI,
Disabling(usize),
}
pub struct Isl29035<'a, A: time::Alarm<'a>> {
i2c: &'a dyn I2CDevice,
alarm: &'a A,
state: Cell<State>,
buffer: TakeCell<'static, [u8]>,
client: OptionalCell<&'a dyn AmbientLightClient>,
}
impl<'a, A: time::Alarm<'a>> Isl29035<'a, A> {
pub fn new(i2c: &'a dyn I2CDevice, alarm: &'a A, buffer: &'static mut [u8]) -> Isl29035<'a, A> {
Isl29035 {
i2c,
alarm,
state: Cell::new(State::Disabled),
buffer: TakeCell::new(buffer),
client: OptionalCell::empty(),
}
}
pub fn start_read_lux(&self) -> Result<(), ErrorCode> {
if self.state.get() == State::Disabled {
self.buffer.take().map_or(Err(ErrorCode::NOMEM), |buf| {
self.i2c.enable();
buf[0] = 0;
// CMD 1 Register:
// Interrupt persist for 1 integration cycle (bits 0 & 1)
// Measure ALS continuously (buts 5,6 & 7)
// Bit 2 is the interrupt bit
// Bits 3 & 4 are reserved
buf[1] = 0b10100000;
// CMD 2 Register:
// Range 4000 (bits 0, 1)
// ADC resolution 8-bit (bits 2,3)
// Other bits are reserved
buf[2] = 0b00001001;
if let Err((error, buf)) = self.i2c.write(buf, 3) {
self.buffer.replace(buf);
self.i2c.disable();
Err(error.into())
} else {
self.state.set(State::Enabling);
Ok(())
}
})
} else {
Err(ErrorCode::BUSY)
}
}
}
impl<'a, A: time::Alarm<'a>> AmbientLight<'a> for Isl29035<'a, A> {
fn set_client(&self, client: &'a dyn AmbientLightClient) {
self.client.set(client)
}
fn read_light_intensity(&self) -> Result<(), ErrorCode> {
self.start_read_lux()
}
}
impl<'a, A: time::Alarm<'a>> time::AlarmClient for Isl29035<'a, A> {
fn alarm(&self) {
self.buffer.take().map(|buffer| {
// Turn on i2c to send commands.
self.i2c.enable();
buffer[0] = 0x02_u8;
if let Err((_error, buf)) = self.i2c.write_read(buffer, 1, 2) {
self.buffer.replace(buf);
self.i2c.disable();
self.state.set(State::Disabled);
self.client.map(|client| client.callback(0));
} else {
self.state.set(State::ReadingLI);
}
});
}
}
impl<'a, A: time::Alarm<'a>> I2CClient for Isl29035<'a, A> {
fn command_complete(&self, buffer: &'static mut [u8], status: Result<(), Error>) {
if status.is_err() {
self.state.set(State::Disabled);
self.buffer.replace(buffer);
self.client.map(|client| client.callback(0));
return;
}
match self.state.get() {
State::Enabling => {
// Set a timer to wait for the conversion to be done.
// For 8 bits, thats 410 us (per Table 11 in the datasheet).
let interval = self.alarm.ticks_from_us(410);
self.alarm.set_alarm(self.alarm.now(), interval);
// Now wait for timer to expire
self.buffer.replace(buffer);
self.i2c.disable();
self.state.set(State::Integrating);
}
State::ReadingLI => {
// During configuration we set the ADC resolution to 8 bits and
// the range to 4000.
//
// Since it's only 8 bits, we ignore the second byte of output.
//
// For a given Range and n (-bits of ADC resolution):
// Lux = Data * (Range / 2^n)
let data = buffer[0] as usize; //((buffer[1] as usize) << 8) | buffer[0] as usize;
let lux = (data * 4000) >> 8;
buffer[0] = 0;
if let Err((_error, buffer)) = self.i2c.write(buffer, 2) {
self.state.set(State::Disabled);
self.buffer.replace(buffer);
self.client.map(|client| client.callback(0));
} else {
self.state.set(State::Disabling(lux));
}
}
State::Disabling(lux) => {
self.i2c.disable();
self.state.set(State::Disabled);
self.buffer.replace(buffer);
self.client.map(|client| client.callback(lux));
}
_ => {}
}
}
}