1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! SyscallDriver for the STMicro HTS221 relative humidity and temperature
//! sensor using the I2C bus.
//!
//! <https://www.st.com/en/mems-and-sensors/hts221.html>
//!
//! > The HTS221 is an ultra-compact sensor for relative humidity and
//! > temperature. It includes a sensing element and a mixed signal ASIC
//! > to provide the measurement information through digital serial
//! > interfaces. The sensing element consists of a polymer dielectric
//! > planar capacitor structure capable of detecting relative humidity
//! > variations and is manufactured using a dedicated ST process.
//!
//! Driver Semantics
//! ----------------
//!
//! This driver exposes the HTS221's temperature and humidity functionality via
//! the [TemperatureDriver] and [HumidityDriver] HIL interfaces. The driver
//! _does not_ attempt to support multiple concurrent requests for temperature
//! or multiple concurrent requests for humidity, but _does_ support a
//! concurrent request each for temperature and humidity. It is not the role of
//! this driver to provide virtualization to multiple clients, but it does
//! provide virtualization to allow it to be used from both a temperature and
//! humidity driver.
//!
//! Specifically, the implementation _always_ reads both temperature and
//! humidity (the chip always provides both anyway). If the driver receives a
//! request for either temperature or humidity while a request for the other is
//! outstanding, both will be returned to their respective clients when the I2C
//! transaction is completed, rather than performing two separate transactions.
//!
//! Polling for data readiness
//! --------------------------
//!
//! The HTS221 has a data-ready line that can provide an interrupt when
//! temperature and humidity data is ready. However, the primary board (the Nano
//! 33 BLE Sense) this driver was developed for does not connect that line to
//! the MCU and, typically, data is ready within a couple read/write I2C
//! transactions. So, the driver **polls** the status register instead. This is
//! probably not optimal from an energy perspective, so should a use case for an
//! interrupt driven interface arise, some brave soul should modify the driver
//! to support both.
//!
//! Limitations
//! -----------
//!
//! The driver uses floating point math to adjust readings based on the
//! calibration registers. This is accurate and matches the chip's datasheet's
//! recommendation, but could increase code size significantly in platforms that
//! do not have hardware support for floating point operations.
//!
//! Usage
//! -----
//!
//! ```rust,ignore
//! # use kernel::static_init;
//!
//! let hts221_i2c = static_init!(
//! capsules::virtual_i2c::I2CDevice,
//! capsules::virtual_i2c::I2CDevice::new(i2c_bus, 0x5f));
//! let hts221 = static_init!(
//! capsules::hts221::Hts221<'static>,
//! capsules::hts221::Hts221::new(hts221_i2c,
//! &mut capsules::hts221::BUFFER));
//! hts221_i2c.set_client(hts221);
//! ```
use core::cell::Cell;
use kernel::hil::i2c::{self, I2CClient, I2CDevice};
use kernel::hil::sensors::{HumidityClient, HumidityDriver, TemperatureClient, TemperatureDriver};
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::ErrorCode;
const REG_AUTO_INCREMENT: u8 = 1 << 7;
const CTRL_REG1: u8 = 0x20;
const STATUS_REG: u8 = 0x27;
const HUMID0_REG: u8 = 0x28;
const CALIB_REG_1ST: u8 = 0x30;
#[derive(Copy, Clone, Debug)]
struct CalibrationData {
temp_slope: f32,
temp_intercept: f32,
humidity_slope: f32,
humidity_intercept: f32,
}
pub struct Hts221<'a, I: I2CDevice> {
buffer: TakeCell<'static, [u8]>,
i2c: &'a I,
temperature_client: OptionalCell<&'a dyn TemperatureClient>,
humidity_client: OptionalCell<&'a dyn HumidityClient>,
state: Cell<State>,
pending_temperature: Cell<bool>,
pending_humidity: Cell<bool>,
}
impl<'a, I: I2CDevice> Hts221<'a, I> {
pub fn new(i2c: &'a I, buffer: &'static mut [u8]) -> Self {
Hts221 {
buffer: TakeCell::new(buffer),
i2c,
temperature_client: OptionalCell::empty(),
humidity_client: OptionalCell::empty(),
state: Cell::new(State::Reset),
pending_temperature: Cell::new(false),
pending_humidity: Cell::new(false),
}
}
// Helper method to kick off a reading for both temperature and humidity.
//
// There are three cases:
// 1. There is no calibration data available yet ([State::Reset])
// 2. There is calibration data already ([State::Idle])
// 3. There is a reading already taking place
fn start_reading(&self) -> Result<(), ErrorCode> {
self.buffer
.take()
.map(|buffer| {
self.i2c.enable();
match self.state.get() {
State::Reset => {
buffer[0] = REG_AUTO_INCREMENT | CALIB_REG_1ST;
if let Err((_error, buffer)) = self.i2c.write_read(buffer, 1, 16) {
self.buffer.replace(buffer);
self.i2c.disable();
} else {
self.state.set(State::Calibrating);
}
}
State::Idle(calibration_data, _, _) => {
buffer[0] = REG_AUTO_INCREMENT | CTRL_REG1;
buffer[1] = 1 << 2 | 1 << 7; // BDU + PD
buffer[2] = 1; // ONE SHOT
if let Err((_error, buffer)) = self.i2c.write(buffer, 3) {
self.buffer.replace(buffer);
self.i2c.disable();
} else {
self.state.set(State::InitiateReading(calibration_data));
}
}
_ => {} // Should really never happen since we only have `buffer` available in the above two states
}
})
.ok_or(ErrorCode::BUSY)
}
}
impl<'a, I: I2CDevice> TemperatureDriver<'a> for Hts221<'a, I> {
fn set_client(&self, client: &'a dyn TemperatureClient) {
self.temperature_client.set(client);
}
fn read_temperature(&self) -> Result<(), ErrorCode> {
self.pending_temperature.set(true);
if !self.pending_humidity.get() {
self.start_reading()
} else {
Ok(())
}
}
}
impl<'a, I: I2CDevice> HumidityDriver<'a> for Hts221<'a, I> {
fn set_client(&self, client: &'a dyn HumidityClient) {
self.humidity_client.set(client);
}
fn read_humidity(&self) -> Result<(), ErrorCode> {
self.pending_humidity.set(true);
if !self.pending_temperature.get() {
self.start_reading()
} else {
Ok(())
}
}
}
#[derive(Clone, Copy, Debug)]
enum State {
Reset,
Calibrating,
InitiateReading(CalibrationData),
CheckStatus(CalibrationData),
Read(CalibrationData),
Idle(CalibrationData, i32, usize),
}
impl<'a, I: I2CDevice> I2CClient for Hts221<'a, I> {
fn command_complete(&self, buffer: &'static mut [u8], status: Result<(), i2c::Error>) {
if let Err(i2c_err) = status {
self.state.set(State::Idle(
CalibrationData {
temp_slope: 0.0,
temp_intercept: 0.0,
humidity_slope: 0.0,
humidity_intercept: 0.0,
},
0,
0,
));
self.buffer.replace(buffer);
self.temperature_client
.map(|client| client.callback(Err(i2c_err.into())));
self.humidity_client.map(|client| client.callback(0));
return;
}
match self.state.get() {
State::Calibrating => {
let h0rh = buffer[0] as f32;
let h1rh = buffer[1] as f32;
let h0t0out = ((buffer[6] as i16) | ((buffer[7] as i16) << 8)) as f32;
let h1t0out = ((buffer[10] as i16) | ((buffer[11] as i16) << 8)) as f32;
let humidity_slope = (h1rh - h0rh) / (2.0 * (h1t0out - h0t0out));
let humidity_intercept = (h0rh / 2.0) - humidity_slope * h0t0out;
let t0deg_c = ((buffer[2] as i16) | (((buffer[5] & 0b11) as i16) << 8)) as f32;
let t1deg_c = ((buffer[3] as i16) | (((buffer[5] & 0b1100) as i16) << 6)) as f32;
let t0out = ((buffer[12] as i16) | ((buffer[13] as i16) << 8)) as f32;
let t1out = ((buffer[14] as i16) | ((buffer[15] as i16) << 8)) as f32;
let temp_slope = (t1deg_c - t0deg_c) / (8.0 * (t1out - t0out));
let temp_intercept = (t0deg_c / 8.0) - temp_slope * t0out;
buffer[0] = REG_AUTO_INCREMENT | CTRL_REG1;
buffer[1] = 1 << 2 | 1 << 7; // BDU + PD
buffer[2] = 1; // ONE SHOT
if let Err((error, buffer)) = self.i2c.write(buffer, 3) {
self.state.set(State::Idle(
CalibrationData {
temp_slope: 0.0,
temp_intercept: 0.0,
humidity_slope: 0.0,
humidity_intercept: 0.0,
},
0,
0,
));
self.buffer.replace(buffer);
self.temperature_client
.map(|client| client.callback(Err(error.into())));
self.humidity_client.map(|client| client.callback(0));
} else {
self.state.set(State::InitiateReading(CalibrationData {
temp_slope,
temp_intercept,
humidity_slope,
humidity_intercept,
}));
}
}
State::InitiateReading(calibration_data) => {
buffer[0] = STATUS_REG;
if let Err((error, buffer)) = self.i2c.write_read(buffer, 1, 1) {
self.state.set(State::Idle(
CalibrationData {
temp_slope: 0.0,
temp_intercept: 0.0,
humidity_slope: 0.0,
humidity_intercept: 0.0,
},
0,
0,
));
self.buffer.replace(buffer);
self.temperature_client
.map(|client| client.callback(Err(error.into())));
self.humidity_client.map(|client| client.callback(0));
} else {
self.state.set(State::CheckStatus(calibration_data));
}
}
State::CheckStatus(calibration_data) => {
if buffer[0] & 0b11 == 0b11 {
buffer[0] = REG_AUTO_INCREMENT | HUMID0_REG;
if let Err((error, buffer)) = self.i2c.write_read(buffer, 1, 4) {
self.state.set(State::Idle(
CalibrationData {
temp_slope: 0.0,
temp_intercept: 0.0,
humidity_slope: 0.0,
humidity_intercept: 0.0,
},
0,
0,
));
self.buffer.replace(buffer);
self.temperature_client
.map(|client| client.callback(Err(error.into())));
self.humidity_client.map(|client| client.callback(0));
} else {
self.state.set(State::Read(calibration_data));
}
} else {
buffer[0] = STATUS_REG;
if let Err((error, buffer)) = self.i2c.write_read(buffer, 1, 1) {
self.state.set(State::Idle(
CalibrationData {
temp_slope: 0.0,
temp_intercept: 0.0,
humidity_slope: 0.0,
humidity_intercept: 0.0,
},
0,
0,
));
self.buffer.replace(buffer);
self.temperature_client
.map(|client| client.callback(Err(error.into())));
self.humidity_client.map(|client| client.callback(0));
}
}
}
State::Read(calibration_data) => {
let humidity_raw = ((buffer[0] as i16) | ((buffer[1] as i16) << 8)) as f32;
let humidity = ((humidity_raw * calibration_data.humidity_slope
+ calibration_data.humidity_intercept)
* 100.0) as usize;
let temperature_raw = ((buffer[2] as i16) | ((buffer[3] as i16) << 8)) as f32;
let temperature = ((temperature_raw * calibration_data.temp_slope
+ calibration_data.temp_intercept)
* 100.0) as i32;
buffer[0] = CTRL_REG1;
// TODO(alevy): this is a workaround for a bug. We should be able to turn
// off the the sensor between transactions, and turn it back on (as is done
// in [start_reading]), but doing so seems not to work and the sensor's
// Status register never updates to read after the first transaction. For
// now, leave it on and waste 2uA.
buffer[1] = 1 << 7; // Leave PD bit on
if let Err((error, buffer)) = self.i2c.write(buffer, 2) {
self.state.set(State::Idle(
CalibrationData {
temp_slope: 0.0,
temp_intercept: 0.0,
humidity_slope: 0.0,
humidity_intercept: 0.0,
},
0,
0,
));
self.buffer.replace(buffer);
self.temperature_client
.map(|client| client.callback(Err(error.into())));
self.humidity_client.map(|client| client.callback(0));
} else {
self.state
.set(State::Idle(calibration_data, temperature, humidity));
}
}
State::Idle(_, temperature, humidity) => {
self.buffer.replace(buffer);
self.i2c.disable();
if self.pending_temperature.get() {
self.pending_temperature.set(false);
self.temperature_client
.map(|client| client.callback(Ok(temperature)));
}
if self.pending_humidity.get() {
self.pending_humidity.set(false);
self.humidity_client.map(|client| client.callback(humidity));
}
}
State::Reset => {} // should never happen
}
}
}