1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! SyscallDriver for the FM25CL FRAM chip.
//!
//! <http://www.cypress.com/part/fm25cl64b-dg>
//!
//! From the FM25CL website:
//!
//! > The FM25CL64B is a 64-Kbit nonvolatile memory employing an advanced
//! > ferroelectric process. A ferroelectric random access memory or F-RAM is
//! > nonvolatile and performs reads and writes similar to a RAM. It provides
//! > reliable data retention for 151 years while eliminating the complexities,
//! > overhead, and system level reliability problems caused by serial flash,
//! > EEPROM, and other nonvolatile memories.
//!
//! Usage
//! -----
//!
//! ```rust,ignore
//! # use kernel::static_init;
//!
//! // Create a SPI device for this chip.
//! let fm25cl_spi = static_init!(
//! capsules::virtual_spi::VirtualSpiMasterDevice<'static, usart::USART>,
//! capsules::virtual_spi::VirtualSpiMasterDevice::new(mux_spi, Some(&sam4l::gpio::PA[25])));
//! // Setup the actual FM25CL driver.
//! let fm25cl = static_init!(
//! capsules::fm25cl::FM25CL<'static,
//! capsules::virtual_spi::VirtualSpiMasterDevice<'static, usart::USART>>,
//! capsules::fm25cl::FM25CL::new(fm25cl_spi,
//! &mut capsules::fm25cl::TXBUFFER, &mut capsules::fm25cl::RXBUFFER));
//! fm25cl_spi.set_client(fm25cl);
//! ```
//!
//! This capsule provides two interfaces:
//!
//! - `hil::nonvolatile_storage::NonvolatileStorage`
//! - `FM25CLCustom`
//!
//! The first is the generic interface for nonvolatile storage. This allows
//! this driver to work with capsules like the `nonvolatile_storage_driver`
//! that provide virtualization and a userspace interface. The second is a
//! custom interface that exposes other chip-specific functions.
use core::cell::Cell;
use core::cmp;
use kernel::hil;
use kernel::utilities::cells::{MapCell, OptionalCell, TakeCell};
use kernel::utilities::leasable_buffer::SubSliceMut;
use kernel::ErrorCode;
pub const BUF_LEN: usize = 512;
const SPI_SPEED: u32 = 4000000;
#[allow(dead_code)]
enum Opcodes {
WriteEnable = 0x06,
WriteDisable = 0x04,
ReadStatusRegister = 0x05,
WriteStatusRegister = 0x01,
ReadMemory = 0x03,
WriteMemory = 0x02,
}
#[derive(Clone, Copy, PartialEq)]
enum State {
Idle,
/// Simple read states
ReadStatus,
/// Write to the FRAM
WriteEnable,
WriteMemory,
/// Read from the FRAM
ReadMemory,
}
pub trait FM25CLCustom {
fn read_status(&self) -> Result<(), ErrorCode>;
}
pub trait FM25CLClient {
fn status(&self, status: u8);
fn read(&self, data: &'static mut [u8], len: usize);
fn done(&self, buffer: &'static mut [u8]);
}
pub struct FM25CL<'a, S: hil::spi::SpiMasterDevice<'a>> {
spi: &'a S,
state: Cell<State>,
txbuffer: MapCell<SubSliceMut<'static, u8>>,
rxbuffer: MapCell<SubSliceMut<'static, u8>>,
client: OptionalCell<&'a dyn hil::nonvolatile_storage::NonvolatileStorageClient>,
client_custom: OptionalCell<&'a dyn FM25CLClient>,
client_buffer: TakeCell<'static, [u8]>, // Store buffer and state for passing back to client
client_write_address: Cell<u16>,
client_write_len: Cell<u16>,
}
impl<'a, S: hil::spi::SpiMasterDevice<'a>> FM25CL<'a, S> {
pub fn new(
spi: &'a S,
txbuffer: &'static mut [u8],
rxbuffer: &'static mut [u8],
) -> FM25CL<'a, S> {
// setup and return struct
FM25CL {
spi,
state: Cell::new(State::Idle),
txbuffer: MapCell::new(txbuffer.into()),
rxbuffer: MapCell::new(rxbuffer.into()),
client: OptionalCell::empty(),
client_custom: OptionalCell::empty(),
client_buffer: TakeCell::empty(),
client_write_address: Cell::new(0),
client_write_len: Cell::new(0),
}
}
pub fn set_client<C: FM25CLClient>(&self, client: &'a C) {
self.client_custom.set(client);
}
/// Setup SPI for this chip
fn configure_spi(&self) -> Result<(), ErrorCode> {
self.spi.configure(
hil::spi::ClockPolarity::IdleLow,
hil::spi::ClockPhase::SampleLeading,
SPI_SPEED,
)
}
pub fn write(
&self,
address: u16,
buffer: &'static mut [u8],
len: u16,
) -> Result<(), ErrorCode> {
self.configure_spi()?;
self.txbuffer
.take()
.map_or(Err(ErrorCode::RESERVE), move |mut txbuffer| {
let write_len = cmp::min(txbuffer.len(), len as usize);
// Need to save the buffer passed to us so we can give it back.
self.client_buffer.replace(buffer);
// Also save address and len for the actual write.
self.client_write_address.set(address);
self.client_write_len.set(write_len as u16);
self.state.set(State::WriteEnable);
txbuffer[0] = Opcodes::WriteEnable as u8;
txbuffer.slice(..1);
let res = self.spi.read_write_bytes(txbuffer, None);
match res {
Ok(()) => Ok(()),
Err((err, txbuffer, _)) => {
self.txbuffer.replace(txbuffer);
Err(err)
}
}
})
}
pub fn read(&self, address: u16, buffer: &'static mut [u8], len: u16) -> Result<(), ErrorCode> {
self.configure_spi()?;
self.txbuffer
.take()
.map_or(Err(ErrorCode::RESERVE), |mut txbuffer| {
self.rxbuffer
.take()
.map_or(Err(ErrorCode::RESERVE), move |mut rxbuffer| {
txbuffer[0] = Opcodes::ReadMemory as u8;
txbuffer[1] = ((address >> 8) & 0xFF) as u8;
txbuffer[2] = (address & 0xFF) as u8;
// Save the user buffer for later
self.client_buffer.replace(buffer);
rxbuffer.reset();
let read_len = cmp::min(rxbuffer.len(), 3 + len as usize);
rxbuffer.slice(..read_len);
self.state.set(State::ReadMemory);
let res = self.spi.read_write_bytes(txbuffer, Some(rxbuffer));
match res {
Ok(()) => Ok(()),
Err((err, txbuffer, rxbuffer)) => {
self.txbuffer.replace(txbuffer);
self.rxbuffer.replace(rxbuffer.unwrap());
Err(err)
}
}
})
})
}
}
impl<'a, S: hil::spi::SpiMasterDevice<'a>> hil::spi::SpiMasterClient for FM25CL<'a, S> {
fn read_write_done(
&self,
mut write_buffer: SubSliceMut<'static, u8>,
read_buffer: Option<SubSliceMut<'static, u8>>,
_status: Result<usize, ErrorCode>,
) {
write_buffer.reset();
match self.state.get() {
State::ReadStatus => {
self.state.set(State::Idle);
// Put back buffers that we got back from SPI layer.
self.txbuffer.replace(write_buffer);
read_buffer.map(|read_buffer| {
let status = read_buffer[1];
// Also replace this buffer
self.rxbuffer.replace(read_buffer);
self.client_custom.map(|client| client.status(status));
});
}
State::WriteEnable => {
self.state.set(State::WriteMemory);
self.client_buffer.map(move |buffer| {
write_buffer[0] = Opcodes::WriteMemory as u8;
write_buffer[1] = ((self.client_write_address.get() >> 8) & 0xFF) as u8;
write_buffer[2] = (self.client_write_address.get() & 0xFF) as u8;
let write_len =
cmp::min(write_buffer.len(), self.client_write_len.get() as usize);
write_buffer[3..(write_len + 3)].copy_from_slice(&buffer[..write_len]);
write_buffer.slice(..write_len + 3);
let _ = self.spi.read_write_bytes(write_buffer, read_buffer);
});
}
State::WriteMemory => {
self.state.set(State::Idle);
let write_len = cmp::min(write_buffer.len(), self.client_write_len.get() as usize);
// Replace these buffers
self.txbuffer.replace(write_buffer);
read_buffer.map(|read_buffer| {
self.rxbuffer.replace(read_buffer);
});
// Call done with the write() buffer
self.client_buffer.take().map(move |buffer| {
self.client
.map(move |client| client.write_done(buffer, write_len));
});
}
State::ReadMemory => {
self.state.set(State::Idle);
// Replace the TX buffer
self.txbuffer.replace(write_buffer);
read_buffer.map(|read_buffer| {
self.client_buffer.take().map(move |buffer| {
let read_len = buffer.len();
buffer[..(read_len - 3)]
.copy_from_slice(&read_buffer[3..((read_len - 3) + 3)]);
self.rxbuffer.replace(read_buffer);
self.client
.map(move |client| client.read_done(buffer, read_len - 3));
});
});
}
_ => {}
}
}
}
// Implement the custom interface that exposes chip-specific commands.
impl<'a, S: hil::spi::SpiMasterDevice<'a>> FM25CLCustom for FM25CL<'a, S> {
fn read_status(&self) -> Result<(), ErrorCode> {
self.configure_spi()?;
self.txbuffer
.take()
.map_or(Err(ErrorCode::RESERVE), |mut txbuffer| {
self.rxbuffer
.take()
.map_or(Err(ErrorCode::RESERVE), move |mut rxbuffer| {
txbuffer[0] = Opcodes::ReadStatusRegister as u8;
// Use 4 bytes instead of the required 2 because that works better
// with DMA for some reason.
// TODO verify SPI return value
rxbuffer.reset();
rxbuffer.slice(..4);
let _ = self.spi.read_write_bytes(txbuffer, Some(rxbuffer));
self.state.set(State::ReadStatus);
Ok(())
})
})
}
}
/// Implement the generic `NonvolatileStorage` interface common to chips that
/// provide nonvolatile memory.
impl<'a, S: hil::spi::SpiMasterDevice<'a>> hil::nonvolatile_storage::NonvolatileStorage<'a>
for FM25CL<'a, S>
{
fn set_client(&self, client: &'a dyn hil::nonvolatile_storage::NonvolatileStorageClient) {
self.client.set(client);
}
fn read(
&self,
buffer: &'static mut [u8],
address: usize,
length: usize,
) -> Result<(), ErrorCode> {
self.read(address as u16, buffer, length as u16)
}
fn write(
&self,
buffer: &'static mut [u8],
address: usize,
length: usize,
) -> Result<(), ErrorCode> {
self.write(address as u16, buffer, length as u16)
}
}