1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Provides userspace access to a Crc unit.
//!
//! ## Instantiation
//!
//! Instantiate the capsule for use as a system call driver with a hardware
//! implementation and a `Grant` for the `App` type, and set the result as a
//! client of the hardware implementation. For example, using the SAM4L's `CrcU`
//! driver:
//!
//! ```rust,ignore
//! # use kernel::static_init;
//!
//! let crc_buffer = static_init!([u8; 64], [0; 64]);
//!
//! let crc = static_init!(
//! capsules::crc::CrcDriver<'static, sam4l::crccu::Crccu<'static>>,
//! capsules::crc::CrcDriver::new(
//! &mut sam4l::crccu::CRCCU,
//! crc_buffer,
//! board_kernel.create_grant(&grant_cap)
//! )
//! );
//! sam4l::crccu::CRCCU.set_client(crc);
//!
//! ```
//!
//! ## Crc Algorithms
//!
//! The capsule supports two general purpose Crc algorithms, as well as a few
//! hardware specific algorithms implemented on the Atmel SAM4L.
//!
//! In the values used to identify polynomials below, more-significant bits
//! correspond to higher-order terms, and the most significant bit is omitted
//! because it always equals one. All algorithms listed here consume each input
//! byte from most-significant bit to least-significant.
//!
//! ### Crc-32
//!
//! __Polynomial__: `0x04C11DB7`
//!
//! This algorithm is used in Ethernet and many other applications. It bit-
//! reverses and then bit-inverts the output.
//!
//! ### Crc-32C
//!
//! __Polynomial__: `0x1EDC6F41`
//!
//! Bit-reverses and then bit-inverts the output. It *may* be equivalent to
//! various Crc functions using the same name.
//!
//! ### SAM4L-16
//!
//! __Polynomial__: `0x1021`
//!
//! This algorithm does no post-processing on the output value. The sixteen-bit
//! Crc result is placed in the low-order bits of the returned result value, and
//! the high-order bits will all be set. That is, result values will always be
//! of the form `0xFFFFxxxx` for this algorithm. It can be performed purely in
//! hardware on the SAM4L.
//!
//! ### SAM4L-32
//!
//! __Polynomial__: `0x04C11DB7`
//!
//! This algorithm uses the same polynomial as `Crc-32`, but does no post-
//! processing on the output value. It can be performed purely in hardware on
//! the SAM4L.
//!
//! ### SAM4L-32C
//!
//! __Polynomial__: `0x1EDC6F41`
//!
//! This algorithm uses the same polynomial as `Crc-32C`, but does no post-
//! processing on the output value. It can be performed purely in hardware on
//! the SAM4L.
use core::cell::Cell;
use core::cmp;
use kernel::grant::{AllowRoCount, AllowRwCount, Grant, UpcallCount};
use kernel::hil::crc::{Client, Crc, CrcAlgorithm, CrcOutput};
use kernel::processbuffer::{ReadableProcessBuffer, ReadableProcessSlice};
use kernel::syscall::{CommandReturn, SyscallDriver};
use kernel::utilities::cells::NumericCellExt;
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::utilities::leasable_buffer::SubSliceMut;
use kernel::{ErrorCode, ProcessId};
/// Syscall driver number.
use capsules_core::driver;
pub const DRIVER_NUM: usize = driver::NUM::Crc as usize;
pub const DEFAULT_CRC_BUF_LENGTH: usize = 256;
/// Ids for read-only allow buffers
mod ro_allow {
pub const BUFFER: usize = 0;
/// The number of allow buffers the kernel stores for this grant
pub const COUNT: u8 = 1;
}
/// An opaque value maintaining state for one application's request
#[derive(Default)]
pub struct App {
// if Some, the process is waiting for the result of CRC
// of len bytes using the given algorithm
request: Option<(CrcAlgorithm, usize)>,
}
/// Struct that holds the state of the Crc driver and implements the `Driver` trait for use by
/// processes through the system call interface.
pub struct CrcDriver<'a, C: Crc<'a>> {
crc: &'a C,
crc_buffer: TakeCell<'static, [u8]>,
grant: Grant<App, UpcallCount<1>, AllowRoCount<{ ro_allow::COUNT }>, AllowRwCount<0>>,
current_process: OptionalCell<ProcessId>,
// We need to save our current
app_buffer_written: Cell<usize>,
}
impl<'a, C: Crc<'a>> CrcDriver<'a, C> {
/// Create a `Crc` driver
///
/// The argument `crc_unit` must implement the abstract `Crc`
/// hardware interface. The argument `apps` should be an empty
/// kernel `Grant`, and will be used to track application
/// requests.
///
/// ## Example
///
/// ```rust,ignore
/// capsules::crc::Crc::new(&sam4l::crccu::CrcCU, board_kernel.create_grant(&grant_cap));
/// ```
///
pub fn new(
crc: &'a C,
crc_buffer: &'static mut [u8],
grant: Grant<App, UpcallCount<1>, AllowRoCount<{ ro_allow::COUNT }>, AllowRwCount<0>>,
) -> CrcDriver<'a, C> {
CrcDriver {
crc,
crc_buffer: TakeCell::new(crc_buffer),
grant,
current_process: OptionalCell::empty(),
app_buffer_written: Cell::new(0),
}
}
fn do_next_input(&self, data: &ReadableProcessSlice, len: usize) -> usize {
let count = self.crc_buffer.take().map_or(0, |kbuffer| {
let copy_len = cmp::min(len, kbuffer.len());
for i in 0..copy_len {
kbuffer[i] = data[i].get();
}
if copy_len > 0 {
let mut leasable = SubSliceMut::new(kbuffer);
leasable.slice(0..copy_len);
let res = self.crc.input(leasable);
match res {
Ok(()) => copy_len,
Err((_err, leasable)) => {
self.crc_buffer.put(Some(leasable.take()));
0
}
}
} else {
0
}
});
count
}
// Start a new request. Return Ok(()) if one started, Err(FAIL) if not.
// Issue callbacks for any requests that are invalid, either because
// they are zero-length or requested an invalid algorithm.
fn next_request(&self) -> Result<(), ErrorCode> {
self.app_buffer_written.set(0);
for process in self.grant.iter() {
let process_id = process.processid();
let started = process.enter(|grant, kernel_data| {
// If there's no buffer this means the process is dead, so
// no need to issue a callback on this error case.
let res: Result<(), ErrorCode> = kernel_data
.get_readonly_processbuffer(ro_allow::BUFFER)
.and_then(|buffer| {
buffer.enter(|buffer| {
if let Some((algorithm, len)) = grant.request {
let copy_len = cmp::min(len, buffer.len());
if copy_len == 0 {
// 0-length or 0-size buffer
Err(ErrorCode::SIZE)
} else {
let res = self.crc.set_algorithm(algorithm);
match res {
Ok(()) => {
let copy_len = self.do_next_input(buffer, copy_len);
if copy_len > 0 {
self.app_buffer_written.set(copy_len);
self.current_process.set(process_id);
Ok(())
} else {
// Next input failed
Err(ErrorCode::FAIL)
}
}
Err(_) => {
// Setting the algorithm failed
Err(ErrorCode::INVAL)
}
}
}
} else {
// no request
Err(ErrorCode::FAIL)
}
})
})
.unwrap_or(Err(ErrorCode::NOMEM));
match res {
Ok(()) => Ok(()),
Err(e) => {
if grant.request.is_some() {
kernel_data
.schedule_upcall(
0,
(kernel::errorcode::into_statuscode(Err(e)), 0, 0),
)
.ok();
grant.request = None;
}
Err(e)
}
}
});
if started.is_ok() {
return started;
}
}
Err(ErrorCode::FAIL)
}
}
/// Processes can use the Crc system call driver to compute Crc redundancy checks over process
/// memory.
///
/// At a high level, the client first provides a callback for the result of computations through
/// the `subscribe` system call and `allow`s the driver access to the buffer over-which to compute.
/// Then, it initiates a Crc computation using the `command` system call. See function-specific
/// comments for details.
impl<'a, C: Crc<'a>> SyscallDriver for CrcDriver<'a, C> {
/// The `allow` syscall for this driver supports the single
/// `allow_num` zero, which is used to provide a buffer over which
/// to compute a Crc computation.
// The `subscribe` syscall supports the single `subscribe_number`
// zero, which is used to provide a callback that will receive the
// result of a Crc computation. The signature of the callback is
//
// ```
//
// fn callback(status: Result<(), ErrorCode>, result: usize) {}
// ```
//
// where
//
// * `status` is indicates whether the computation
// succeeded. The status `BUSY` indicates the unit is already
// busy. The status `SIZE` indicates the provided buffer is
// too large for the unit to handle.
//
// * `result` is the result of the Crc computation when `status == BUSY`.
//
/// The command system call for this driver return meta-data about the driver and kicks off
/// Crc computations returned through callbacks.
///
/// ### Command Numbers
///
/// * `0`: Returns non-zero to indicate the driver is present.
///
/// * `1`: Requests that a Crc be computed over the buffer
/// previously provided by `allow`. If none was provided,
/// this command will return `INVAL`.
///
/// This command's driver-specific argument indicates what Crc
/// algorithm to perform, as listed below. If an invalid
/// algorithm specifier is provided, this command will return
/// `INVAL`.
///
/// If a callback was not previously registered with
/// `subscribe`, this command will return `INVAL`.
///
/// If a computation has already been requested by this
/// application but the callback has not yet been invoked to
/// receive the result, this command will return `BUSY`.
///
/// When `Ok(())` is returned, this means the request has been
/// queued and the callback will be invoked when the Crc
/// computation is complete.
///
/// ### Algorithm
///
/// The Crc algorithms supported by this driver are listed below. In
/// the values used to identify polynomials, more-significant bits
/// correspond to higher-order terms, and the most significant bit is
/// omitted because it always equals one. All algorithms listed here
/// consume each input byte from most-significant bit to
/// least-significant.
///
/// * `0: Crc-32` This algorithm is used in Ethernet and many other
/// applications. It uses polynomial 0x04C11DB7 and it bit-reverses
/// and then bit-inverts the output.
///
/// * `1: Crc-32C` This algorithm uses polynomial 0x1EDC6F41 (due
/// to Castagnoli) and it bit-reverses and then bit-inverts the
/// output. It *may* be equivalent to various Crc functions using
/// the same name.
///
/// * `2: Crc-16CCITT` This algorithm uses polynomial 0x1021 and does
/// no post-processing on the output value. The sixteen-bit Crc
/// result is placed in the low-order bits of the returned result
/// value. That is, result values will always be of the form `0x0000xxxx`
/// for this algorithm. It can be performed purely in hardware on the SAM4L.
fn command(
&self,
command_num: usize,
algorithm_id: usize,
length: usize,
process_id: ProcessId,
) -> CommandReturn {
match command_num {
// This driver is present
0 => CommandReturn::success(),
// Request a Crc computation
1 => {
// Parse the user provided algorithm number
let algorithm = if let Some(alg) = alg_from_user_int(algorithm_id) {
alg
} else {
return CommandReturn::failure(ErrorCode::INVAL);
};
let res = self
.grant
.enter(process_id, |grant, kernel_data| {
if grant.request.is_some() {
Err(ErrorCode::BUSY)
} else if length
> kernel_data
.get_readonly_processbuffer(ro_allow::BUFFER)
.map_or(0, |buffer| buffer.len())
{
Err(ErrorCode::SIZE)
} else {
grant.request = Some((algorithm, length));
Ok(())
}
})
.unwrap_or_else(|e| Err(ErrorCode::from(e)));
match res {
Ok(()) => {
if self.current_process.is_none() {
self.next_request().map_or_else(
|e| CommandReturn::failure(ErrorCode::into(e)),
|()| CommandReturn::success(),
)
} else {
// Another request is ongoing. We've enqueued this one,
// wait for it to be started when it's its turn.
CommandReturn::success()
}
}
Err(e) => CommandReturn::failure(e),
}
}
_ => CommandReturn::failure(ErrorCode::NOSUPPORT),
}
}
fn allocate_grant(&self, processid: ProcessId) -> Result<(), kernel::process::Error> {
self.grant.enter(processid, |_, _| {})
}
}
impl<'a, C: Crc<'a>> Client for CrcDriver<'a, C> {
fn input_done(&self, result: Result<(), ErrorCode>, buffer: SubSliceMut<'static, u8>) {
// A call to `input` has finished. This can mean that either
// we have processed the entire buffer passed in, or it was
// truncated by the CRC unit as it was too large. In the first
// case, we can see whether there is more outstanding data
// from the app, whereas in the latter we need to advance the
// SubSliceMut window and pass it in again.
let mut computing = false;
// There are three outcomes to this match:
// - crc_buffer is not put back: input is ongoing
// - crc_buffer is put back and computing is true: compute is ongoing
// - crc_buffer is put back and computing is false: something failed, start a new request
match result {
Ok(()) => {
// Completed leasable buffer, either refill it or compute
if buffer.len() == 0 {
// Put the kernel buffer back
self.crc_buffer.replace(buffer.take());
self.current_process.map(|pid| {
let _res = self.grant.enter(pid, |grant, kernel_data| {
// This shouldn't happen unless there's a way to clear out a request
// through a system call: regardless, the request is gone, so cancel
// the CRC.
if grant.request.is_none() {
kernel_data
.schedule_upcall(
0,
(
kernel::errorcode::into_statuscode(Err(
ErrorCode::FAIL,
)),
0,
0,
),
)
.ok();
return;
}
// Compute how many remaining bytes to compute over
let (alg, size) = grant.request.unwrap();
grant.request = Some((alg, size));
let size = kernel_data
.get_readonly_processbuffer(ro_allow::BUFFER)
.map_or(0, |buffer| buffer.len())
.min(size);
// If the buffer has shrunk, size might be less than
// app_buffer_written: don't allow wraparound
let remaining = size - cmp::min(self.app_buffer_written.get(), size);
if remaining == 0 {
// No more bytes to input: compute
let res = self.crc.compute();
match res {
Ok(()) => {
computing = true;
}
Err(_) => {
grant.request = None;
kernel_data
.schedule_upcall(
0,
(
kernel::errorcode::into_statuscode(Err(
ErrorCode::FAIL,
)),
0,
0,
),
)
.ok();
}
}
} else {
// More bytes: do the next input
let amount = kernel_data
.get_readonly_processbuffer(ro_allow::BUFFER)
.and_then(|buffer| {
buffer.enter(|app_slice| {
self.do_next_input(
&app_slice[self.app_buffer_written.get()..],
remaining,
)
})
})
.unwrap_or(0);
if amount == 0 {
grant.request = None;
kernel_data
.schedule_upcall(
0,
(
kernel::errorcode::into_statuscode(Err(
ErrorCode::NOMEM,
)),
0,
0,
),
)
.ok();
} else {
self.app_buffer_written.add(amount);
}
}
});
});
} else {
// There's more in the leasable buffer: pass it to input again
let res = self.crc.input(buffer);
match res {
Ok(()) => {}
Err((e, returned_buffer)) => {
self.crc_buffer.replace(returned_buffer.take());
self.current_process.map(|pid| {
let _res = self.grant.enter(pid, |grant, kernel_data| {
grant.request = None;
kernel_data
.schedule_upcall(
0,
(kernel::errorcode::into_statuscode(Err(e)), 0, 0),
)
.ok();
});
});
}
}
}
}
Err(e) => {
// The callback returned an error, pass it back to userspace
self.crc_buffer.replace(buffer.take());
self.current_process.map(|pid| {
let _res = self.grant.enter(pid, |grant, kernel_data| {
grant.request = None;
kernel_data
.schedule_upcall(0, (kernel::errorcode::into_statuscode(Err(e)), 0, 0))
.ok();
});
});
}
}
// The buffer was put back (there is no input ongoing) but computing is false,
// so no compute is ongoing. Start a new request if there is one.
if self.crc_buffer.is_some() && !computing {
let _ = self.next_request();
}
}
fn crc_done(&self, result: Result<CrcOutput, ErrorCode>) {
// First of all, inform the app about the finished operation /
// the result
self.current_process.take().map(|process_id| {
let _ = self.grant.enter(process_id, |grant, kernel_data| {
grant.request = None;
match result {
Ok(output) => {
let (val, user_int) = encode_upcall_crc_output(output);
kernel_data
.schedule_upcall(
0,
(
kernel::errorcode::into_statuscode(Ok(())),
val as usize,
user_int as usize,
),
)
.ok();
}
Err(e) => {
kernel_data
.schedule_upcall(0, (kernel::errorcode::into_statuscode(Err(e)), 0, 0))
.ok();
}
}
});
});
let _ = self.next_request();
}
}
fn alg_from_user_int(i: usize) -> Option<CrcAlgorithm> {
match i {
0 => Some(CrcAlgorithm::Crc32),
1 => Some(CrcAlgorithm::Crc32C),
2 => Some(CrcAlgorithm::Crc16CCITT),
_ => None,
}
}
fn encode_upcall_crc_output(output: CrcOutput) -> (u32, u32) {
match output {
CrcOutput::Crc32(val) => (val, 0),
CrcOutput::Crc32C(val) => (val, 1),
CrcOutput::Crc16CCITT(val) => (val as u32, 2),
}
}