1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! hil driver for Bmp280 Temperature and Pressure Sensor
//!
//! Written by Dorota <gihu.dcz@porcupinefactory.org>
//!
//! Based off the SHT3x code.
//!
//! Not implemented: pressure

use core::cell::Cell;
use kernel::debug;
use kernel::hil;
use kernel::hil::i2c;
use kernel::hil::time::{Alarm, ConvertTicks};
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::ErrorCode;

pub static BASE_ADDR: u8 = 0x76;

/// Currently sized enough for temperature readings only.
pub const BUFFER_SIZE: usize = 6;

#[allow(non_camel_case_types)]
#[allow(dead_code)]
enum Register {
    /// First register of calibration data.
    /// Each register is 2 bytes long.
    DIG_T1 = 0x88,
    DIG_T2 = 0x8a,
    DIG_T3 = 0x8c,
    ID = 0xd0,
    RESET = 0xe0,
    // measuring: [3]
    // im_update: [0]
    STATUS = 0xf3,
    // osrs_t: [7:5]
    // osrs_p: [4:2]
    // mode: [1:0]
    CTRL_MEAS = 0xf4,
    // t_sb: [7:5]
    // filter: [4:2]
    // spi3w_en: [0]
    CONFIG = 0xf5,
    PRESS_MSB = 0xf7,
    PRESS_LSB = 0xf8,
    // xlsb: [7:4]
    PRESS_XLSB = 0xf9,
    TEMP_MSB = 0xfa,
    TEMP_LSB = 0xfb,
    // xlsb: [7:4]
    TEMP_XLSB = 0xfc,
}

#[derive(Clone, Copy, PartialEq, Debug)]
struct CalibrationData {
    dig_t1: u16,
    dig_t2: i16,
    dig_t3: i16,
    // TODO: pressure calibration
}

/// CAUTION: calibration data puts least significant byte in the lowest address,
/// readouts do the opposite.
fn twobyte(lsb: u8, msb: u8) -> u16 {
    u16::from_be_bytes([msb, lsb])
}

impl CalibrationData {
    fn new(i2c_raw: &[u8]) -> Self {
        CalibrationData {
            dig_t1: twobyte(i2c_raw[0], i2c_raw[1]),
            dig_t2: twobyte(i2c_raw[2], i2c_raw[3]) as i16,
            dig_t3: twobyte(i2c_raw[4], i2c_raw[5]) as i16,
        }
    }

    fn temp_from_raw(&self, temp: i32) -> i32 {
        let dig_t1 = self.dig_t1 as i32; // same, 16-bits
        let dig_t2 = self.dig_t2 as i32; // same, 16-bits
        let dig_t3 = self.dig_t3 as i32; // same, 16-bits
                                         // From the datasheet
        let var1 = (((temp >> 3) - (dig_t1 << 1)) * dig_t2) >> 11;
        let a = (temp >> 4) - dig_t1;
        let var2 = (((a * a) >> 12) * dig_t3) >> 14;
        let t_fine = var1 + var2;
        ((t_fine * 5) + 128) >> 8
    }
}

/// Internal state.
/// Each state can lead to the next on in order of appearance.
#[derive(Clone, Copy, PartialEq, Debug)]
enum State {
    Uninitialized,
    InitId,
    /// It's not guaranteed that the MCU reset is the same as device power-on,
    /// so an explicit reset is necessary.
    InitResetting,
    InitWaitingReady,
    InitReadingCalibration,

    Idle(CalibrationData),

    // States related to sample readout
    /// One-shot mode request sent
    Configuring(CalibrationData),
    /// Sampling takes milliseconds, so spend most of that time sleeping.
    WaitingForAlarm(CalibrationData),
    /// Polling for the readout to become ready.
    Waiting(CalibrationData),
    /// Waiting for readout to return.
    /// This state can also lead back to Idle.
    Reading(CalibrationData),

    /// Reset cannot be attempted.
    /// This is because reset failed before, or because the ID is mismatched.
    IrrecoverableError,
    /// Irrecoverable. Currently only when init fails.
    /// Reset will clear this.
    Error,
    /// An unexpected, irrecoverable situation was encountered,
    /// and the driver is giving up.
    /// Reset clears this.
    Bug,
}

impl State {
    /// Changes state to one denoting this driver is buggy.
    fn to_bug(self) -> Self {
        match self {
            // A bug does not override the device not being present.
            State::IrrecoverableError => State::IrrecoverableError,
            _ => State::Bug,
        }
    }
}

/// Complies with the reading and writing protocol used by the sensor.
struct I2cWrapper<'a, I: i2c::I2CDevice> {
    i2c: &'a I,
}

impl<'a, I: i2c::I2CDevice> I2cWrapper<'a, I> {
    fn write<const COUNT: usize>(
        &self,
        buffer: &'static mut [u8],
        addr: Register,
        data: [u8; COUNT],
    ) -> Result<(), (i2c::Error, &'static mut [u8])> {
        buffer[0] = addr as u8;
        buffer[1..][..COUNT].copy_from_slice(&data);
        self.i2c.enable();
        self.i2c.write(buffer, COUNT + 1)
    }

    /// Requests a read into buffer.
    /// Parse the result using `parse_read`.
    fn read(
        &self,
        buffer: &'static mut [u8],
        addr: Register,
        count: usize,
    ) -> Result<(), (i2c::Error, &'static mut [u8])> {
        buffer[0] = addr as u8;
        self.i2c.enable();
        self.i2c.write_read(buffer, 1, count)
    }

    fn disable(&self) {
        self.i2c.disable()
    }

    fn parse_read(buffer: &[u8], count: u8) -> &[u8] {
        &buffer[..(count as usize)]
    }
}

pub struct Bmp280<'a, A: Alarm<'a>, I: i2c::I2CDevice> {
    i2c: I2cWrapper<'a, I>,
    temperature_client: OptionalCell<&'a dyn hil::sensors::TemperatureClient>,
    // This might be better as a `RefCell`,
    // because `State` is multiple bytes due to the `CalibrationData`.
    // `Cell` requires Copy, which might get expensive, while `RefCell` doesn't.
    // It's probably not a good idea to split `CalibrationData`
    // into a separate place, because it will make state more duplicated.
    state: Cell<State>,
    /// Stores i2c commands
    buffer: TakeCell<'static, [u8]>,
    /// Needed to wait for readout completion, which can take milliseconds.
    /// It's possible to implement this without an alarm with busy polling, but that's wasteful.
    alarm: &'a A,
}

impl<'a, A: Alarm<'a>, I: i2c::I2CDevice> Bmp280<'a, A, I> {
    pub fn new(i2c: &'a I, buffer: &'static mut [u8], alarm: &'a A) -> Self {
        Self {
            i2c: I2cWrapper { i2c },
            temperature_client: OptionalCell::empty(),
            state: Cell::new(State::Uninitialized),
            buffer: TakeCell::new(buffer),
            alarm,
        }
    }

    /// Resets the device and brings it into a known state.
    pub fn begin_reset(&self) -> Result<(), ErrorCode> {
        self.buffer
            .take()
            .map_or(Err(ErrorCode::NOMEM), |buffer| match self.state.get() {
                State::Uninitialized | State::Error | State::Bug => {
                    let (ret, new_state) = match self.i2c.read(buffer, Register::ID, 1) {
                        Ok(()) => (Ok(()), State::InitId),
                        Err((_e, buffer)) => {
                            self.i2c.disable();
                            self.buffer.replace(buffer);
                            (Err(ErrorCode::FAIL), State::IrrecoverableError)
                        }
                    };
                    self.state.set(new_state);
                    ret
                }
                State::IrrecoverableError => Err(ErrorCode::NODEVICE),
                _ => Err(ErrorCode::ALREADY),
            })
    }

    pub fn read_temperature(&self) -> Result<(), ErrorCode> {
        match self.state.get() {
            // Actually, the sensor might be on, just in default state.
            State::Uninitialized => Err(ErrorCode::OFF),
            State::InitId
            | State::InitResetting
            | State::InitWaitingReady
            | State::InitReadingCalibration => Err(ErrorCode::BUSY),
            State::Idle(calibration) => {
                self.buffer.take().map_or(Err(ErrorCode::NOMEM), |buffer| {
                    // todo: use bitfield crate
                    // forced mode, oversampling 1
                    let val = 0b00100001;
                    let (ret, new_state) = match self.i2c.write(buffer, Register::CTRL_MEAS, [val])
                    {
                        Ok(()) => (Ok(()), State::Configuring(calibration)),
                        Err((_e, buffer)) => {
                            self.i2c.disable();
                            self.buffer.replace(buffer);
                            (Err(ErrorCode::FAIL), State::Idle(calibration))
                        }
                    };
                    self.state.set(new_state);
                    ret
                })
            }
            State::Configuring(_)
            | State::WaitingForAlarm(_)
            | State::Waiting(_)
            | State::Reading(_) => Err(ErrorCode::BUSY),
            State::Error | State::Bug => Err(ErrorCode::FAIL),
            State::IrrecoverableError => Err(ErrorCode::NODEVICE),
        }
    }

    fn handle_alarm(&self) {
        match self.state.get() {
            State::WaitingForAlarm(calibration) => self.buffer.take().map_or_else(
                || {
                    debug!("BMP280 No buffer available!");
                    self.state.set(State::IrrecoverableError)
                },
                |buffer| {
                    let new_state = match self.check_ready(buffer) {
                        Ok(()) => State::Waiting(calibration),
                        Err((_e, buffer)) => {
                            self.i2c.disable();
                            self.buffer.replace(buffer);
                            State::Idle(calibration)
                        }
                    };
                    self.state.set(new_state)
                },
            ),
            State::IrrecoverableError => {}
            other => {
                debug!("BMP280 received unexpected alarm in state {:?}", other);
                self.state.set(other.to_bug())
            }
        }
    }

    fn arm_alarm(&self) {
        // Datasheet says temp oversampling=1 makes a reading typically take 5.5ms.
        // (Maximally 6.4ms).
        let delay = self.alarm.ticks_from_us(6400);
        self.alarm.set_alarm(self.alarm.now(), delay);
    }

    fn check_ready(
        &self,
        buffer: &'static mut [u8],
    ) -> Result<(), (i2c::Error, &'static mut [u8])> {
        self.i2c.read(buffer, Register::STATUS, 1)
    }
}

enum I2cOperation {
    Read {
        addr: Register,
        count: usize,
        fail_state: State,
    },
    Write {
        addr: Register,
        data: u8,
        fail_state: State,
    },
    Disable,
}

impl I2cOperation {
    fn check_ready(fail_state: State) -> Self {
        Self::Read {
            addr: Register::STATUS,
            count: 1,
            fail_state,
        }
    }
}

impl<'a, A: Alarm<'a>, I: i2c::I2CDevice> i2c::I2CClient for Bmp280<'a, A, I> {
    fn command_complete(&self, buffer: &'static mut [u8], status: Result<(), i2c::Error>) {
        let mut temp_readout = None;
        let mut i2c_op = I2cOperation::Disable;

        let new_state = match status {
            Ok(()) => match self.state.get() {
                State::InitId => {
                    let id = I2cWrapper::<I>::parse_read(buffer, 1);
                    if id[0] == 0x58 {
                        i2c_op = I2cOperation::Write {
                            addr: Register::RESET,
                            data: 0xb6,
                            fail_state: State::IrrecoverableError,
                        };
                        State::InitResetting
                    } else {
                        State::IrrecoverableError
                    }
                }
                State::InitResetting => {
                    i2c_op = I2cOperation::check_ready(State::Error);
                    State::InitWaitingReady
                }
                State::InitWaitingReady => {
                    let waiting = I2cWrapper::<I>::parse_read(buffer, 1)[0];
                    if waiting & 0b1 == 0 {
                        // finished init
                        i2c_op = I2cOperation::Read {
                            addr: Register::DIG_T1,
                            count: 6,
                            fail_state: State::Error,
                        };
                        State::InitReadingCalibration
                    } else {
                        i2c_op = I2cOperation::check_ready(State::Error);
                        State::InitWaitingReady
                    }
                }
                State::InitReadingCalibration => {
                    let data = I2cWrapper::<I>::parse_read(buffer, 6);
                    let calibration = CalibrationData::new(data);
                    State::Idle(calibration)
                }
                // Readout-related states
                State::Configuring(calibration) => {
                    self.arm_alarm();
                    State::WaitingForAlarm(calibration)
                }
                State::Waiting(calibration) => {
                    let waiting_value = I2cWrapper::<I>::parse_read(buffer, 1);
                    // not waiting
                    if waiting_value[0] & 0b1000 == 0 {
                        i2c_op = I2cOperation::Read {
                            addr: Register::TEMP_MSB,
                            count: 3,
                            fail_state: State::Idle(calibration),
                        };
                        State::Reading(calibration)
                    } else {
                        i2c_op = I2cOperation::check_ready(State::Idle(calibration));
                        State::Waiting(calibration)
                    }
                }
                State::Reading(calibration) => {
                    let readout = I2cWrapper::<I>::parse_read(buffer, 3);
                    let msb = readout[0] as u32;
                    let lsb = readout[1] as u32;
                    let xlsb = readout[2] as u32;
                    let raw_temp: i32 =
                        ((((msb << 12) + (lsb << 4) + (xlsb >> 4)) << 12) as i32) >> 12; // ensure sign extention
                    temp_readout = Some(Ok(calibration.temp_from_raw(raw_temp)));
                    State::Idle(calibration)
                }
                other => {
                    debug!("BMP280 received unexpected i2c reply in state {:?}", other);
                    other.to_bug()
                }
            },
            Err(i2c_err) => match self.state.get() {
                State::Configuring(calibration)
                | State::Waiting(calibration)
                | State::Reading(calibration) => {
                    temp_readout = Some(Err(i2c_err.into()));
                    State::Idle(calibration)
                }
                State::InitId
                | State::InitResetting
                | State::InitWaitingReady
                | State::InitReadingCalibration => State::Error,
                other => {
                    debug!("BMP280 received unexpected i2c reply in state {:?}", other);
                    other.to_bug()
                }
            },
        };

        // Try enqueueing the requested i2c operation
        let new_state = match i2c_op {
            I2cOperation::Disable => {
                self.i2c.disable();
                self.buffer.replace(buffer);
                new_state
            }
            I2cOperation::Read {
                addr,
                count,
                fail_state,
            } => {
                if let Err((_e, buffer)) = self.i2c.read(buffer, addr, count) {
                    self.i2c.disable();
                    self.buffer.replace(buffer);
                    fail_state
                } else {
                    new_state
                }
            }
            I2cOperation::Write {
                addr,
                data,
                fail_state,
            } => {
                if let Err((_e, buffer)) = self.i2c.write(buffer, addr, [data]) {
                    self.i2c.disable();
                    self.buffer.replace(buffer);
                    fail_state
                } else {
                    new_state
                }
            }
        };

        // Setting state before the callback,
        // in case the callback wants to use the same driver again.
        self.state.set(new_state);
        if let Some(temp) = temp_readout {
            self.temperature_client.map(|cb| cb.callback(temp));
        }
    }
}

impl<'a, A: Alarm<'a>, I: i2c::I2CDevice> hil::sensors::TemperatureDriver<'a> for Bmp280<'a, A, I> {
    fn set_client(&self, client: &'a dyn hil::sensors::TemperatureClient) {
        self.temperature_client.set(client)
    }

    fn read_temperature(&self) -> Result<(), ErrorCode> {
        self.read_temperature()
    }
}

impl<'a, A: hil::time::Alarm<'a>, I: i2c::I2CDevice> hil::time::AlarmClient for Bmp280<'a, A, I> {
    fn alarm(&self) {
        self.handle_alarm()
    }
}