1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2023.

//! SyscallDriver for the Bosch BMM150 geomagnetic sensor.
//!
//! <https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmm150-ds001.pdf>
//!
//! > The BMM150 is a standalone geomagnetic sensor for consumer
//! > market applications. It allows measurements of the magnetic
//! > field in three perpendicular axes. Based on Bosch’s proprietary
//! > FlipCore technology, performance and features of BMM150 are
//! > carefully tuned and perfectly match the demanding requirements of
//! > all 3-axis mobile applications such as electronic compass, navigation
//! > or augmented reality.
//!
//! //! Driver Semantics
//! ----------------
//!
//! This driver exposes the BMM150's functionality via the [NineDof] and
//! [NineDofClient] HIL interfaces. If gyroscope or accelerometer data is
//! requested, the driver will return a ErrorCode.
//!
//! //! Usage
//! -----
//!
//! ```rust,ignore
//! # use kernel::static_init;
//!
//! let bmm150_i2c = static_init!(
//!     capsules::virtual_i2c::I2CDevice,
//!     capsules::virtual_i2c::I2CDevice::new(i2c_bus, 0x10));
//! let bmm150 = static_init!(
//!     capsules::bmm150::BMM150<'static>,
//!     capsules::bmm150::BMM150::new(bmm150_i2c,
//!         &mut capsules::BMM150::BUFFER));
//! bmm150_i2c.set_client(bmm150);
//! ```

use core::cell::Cell;
use kernel::hil::i2c::{self, I2CClient, I2CDevice};
use kernel::hil::sensors::{NineDof, NineDofClient};
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::ErrorCode;

#[allow(dead_code)]
enum Registers {
    ChipID = 0x40,
    DATAxLsb = 0x42,
    DATAxMsb = 0x43,
    DATAyLsb = 0x44,
    DATAyMsb = 0x45,
    DATAzLsb = 0x46,
    DATAzMsb = 0x47,
    RHALLlsb = 0x48,
    RHALLmsb = 0x49,
    INTST = 0x4A,
    CTRL1 = 0x4B,
    CTRL2 = 0x4C,
    CTRL3 = 0x4D,
    CTRL4 = 0x4E,
    LoThres = 0x4F,
    HiThres = 0x50,
    REPXY = 0x51,
    REPZ = 0x52,
}

pub struct BMM150<'a, I: I2CDevice> {
    buffer: TakeCell<'static, [u8]>,
    i2c: &'a I,
    ninedof_client: OptionalCell<&'a dyn NineDofClient>,
    state: Cell<State>,
}

impl<'a, I: I2CDevice> BMM150<'a, I> {
    pub fn new(buffer: &'static mut [u8], i2c: &'a I) -> BMM150<'a, I> {
        BMM150 {
            buffer: TakeCell::new(buffer),
            i2c,
            ninedof_client: OptionalCell::empty(),
            state: Cell::new(State::Suspend),
        }
    }

    pub fn start_measurement(&self) -> Result<(), ErrorCode> {
        self.buffer
            .take()
            .map(|buffer| {
                self.i2c.enable();
                match self.state.get() {
                    State::Suspend => {
                        buffer[0] = Registers::CTRL1 as u8;
                        buffer[1] = 0x1_u8;

                        if let Err((_error, buffer)) = self.i2c.write(buffer, 2) {
                            self.buffer.replace(buffer);
                            self.i2c.disable();
                        } else {
                            self.state.set(State::PowerOn);
                        }
                    }
                    State::Sleep => {
                        buffer[0] = Registers::CTRL2 as u8;
                        buffer[1] = 0x3A_u8;

                        if let Err((_error, buffer)) = self.i2c.write(buffer, 2) {
                            self.buffer.replace(buffer);
                            self.i2c.disable();
                        } else {
                            self.state.set(State::InitializeReading);
                        }
                    }
                    _ => {}
                }
            })
            .ok_or(ErrorCode::FAIL)
    }
}

impl<'a, I: i2c::I2CDevice> NineDof<'a> for BMM150<'a, I> {
    fn set_client(&self, client: &'a dyn NineDofClient) {
        self.ninedof_client.set(client);
    }

    fn read_magnetometer(&self) -> Result<(), ErrorCode> {
        self.start_measurement()
    }
}

#[derive(Clone, Copy, Debug)]
enum State {
    Suspend,
    Sleep,
    PowerOn,
    InitializeReading,
    ReadMeasurement,
    Read,
}

impl<'a, I: I2CDevice> I2CClient for BMM150<'a, I> {
    fn command_complete(&self, buffer: &'static mut [u8], status: Result<(), i2c::Error>) {
        if let Err(i2c_err) = status {
            self.state.set(State::Sleep);
            self.buffer.replace(buffer);
            self.ninedof_client
                .map(|client| client.callback(i2c_err as usize, 0, 0));
            return;
        }

        match self.state.get() {
            State::PowerOn => {
                buffer[0] = Registers::CTRL2 as u8;
                buffer[1] = 0x3A_u8;

                if let Err((error, buffer)) = self.i2c.write(buffer, 2) {
                    self.buffer.replace(buffer);
                    self.i2c.disable();
                    self.ninedof_client
                        .map(|client| client.callback(error as usize, 0, 0));
                } else {
                    self.state.set(State::InitializeReading);
                }
            }
            State::InitializeReading => {
                buffer[0] = Registers::DATAxLsb as u8;

                if let Err((i2c_err, buffer)) = self.i2c.write(buffer, 1) {
                    self.state.set(State::Sleep);
                    self.buffer.replace(buffer);
                    self.ninedof_client
                        .map(|client| client.callback(i2c_err as usize, 0, 0));
                } else {
                    self.state.set(State::ReadMeasurement);
                }
            }
            State::ReadMeasurement => {
                if let Err((i2c_err, buffer)) = self.i2c.read(buffer, 8) {
                    self.state.set(State::Sleep);
                    self.buffer.replace(buffer);
                    self.ninedof_client
                        .map(|client| client.callback(i2c_err as usize, 0, 0));
                } else {
                    self.state.set(State::Read);
                }
            }
            State::Read => {
                let x_axis = ((buffer[1] as i16) << 5) | ((buffer[0] as i16) >> 3);
                let y_axis = ((buffer[3] as i16) << 5) | ((buffer[2] as i16) >> 3);
                let z_axis = ((buffer[5] as i16) << 7) | ((buffer[4] as i16) >> 1);

                self.state.set(State::Sleep);
                self.buffer.replace(buffer);
                self.i2c.disable();
                self.ninedof_client.map(|client| {
                    client.callback(x_axis as usize, y_axis as usize, z_axis as usize)
                });
            }
            State::Sleep => {}   // should never happen
            State::Suspend => {} // should never happen
        }
    }
}