capsules_core/virtualizers/
virtual_alarm.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! Virtualize the Alarm interface to enable multiple users of an underlying
//! alarm hardware peripheral.

use core::cell::Cell;

use kernel::collections::list::{List, ListLink, ListNode};
use kernel::hil::time::{self, Alarm, Ticks, Time};
use kernel::utilities::cells::OptionalCell;
use kernel::ErrorCode;

#[derive(Copy, Clone)]
struct TickDtReference<T: Ticks> {
    /// Reference time point when this alarm was setup.
    reference: T,
    /// Duration of this alarm w.r.t. the reference time point. In other words, this alarm should
    /// fire at `reference + dt`.
    dt: T,
    /// True if this dt only represents a portion of the original dt that was requested. If true,
    /// then we need to wait for another max_tick/2 after an internal extended dt reference alarm
    /// fires. This ensures we can wait the full max_tick even if there is latency in the system.
    extended: bool,
}

impl<T: Ticks> TickDtReference<T> {
    #[inline]
    fn reference_plus_dt(&self) -> T {
        self.reference.wrapping_add(self.dt)
    }
}

/// An object to multiplex multiple "virtual" alarms over a single underlying alarm. A
/// `VirtualMuxAlarm` is a node in a linked list of alarms that share the same underlying alarm.
pub struct VirtualMuxAlarm<'a, A: Alarm<'a>> {
    /// Underlying alarm which multiplexes all these virtual alarm.
    mux: &'a MuxAlarm<'a, A>,
    /// Reference and dt point when this alarm was setup.
    dt_reference: Cell<TickDtReference<A::Ticks>>,
    /// Whether this alarm is currently armed, i.e. whether it should fire when the time has
    /// elapsed.
    armed: Cell<bool>,
    /// Next alarm in the list.
    next: ListLink<'a, VirtualMuxAlarm<'a, A>>,
    /// Alarm client for this node in the list.
    client: OptionalCell<&'a dyn time::AlarmClient>,
}

impl<'a, A: Alarm<'a>> ListNode<'a, VirtualMuxAlarm<'a, A>> for VirtualMuxAlarm<'a, A> {
    fn next(&self) -> &'a ListLink<VirtualMuxAlarm<'a, A>> {
        &self.next
    }
}

impl<'a, A: Alarm<'a>> VirtualMuxAlarm<'a, A> {
    /// After calling new, always call setup()
    pub fn new(mux_alarm: &'a MuxAlarm<'a, A>) -> VirtualMuxAlarm<'a, A> {
        let zero = A::Ticks::from(0);
        VirtualMuxAlarm {
            mux: mux_alarm,
            dt_reference: Cell::new(TickDtReference {
                reference: zero,
                dt: zero,
                extended: false,
            }),
            armed: Cell::new(false),
            next: ListLink::empty(),
            client: OptionalCell::empty(),
        }
    }

    /// Call this method immediately after new() to link this to the mux, otherwise alarms won't
    /// fire
    pub fn setup(&'a self) {
        self.mux.virtual_alarms.push_head(self);
    }
}

impl<'a, A: Alarm<'a>> Time for VirtualMuxAlarm<'a, A> {
    type Frequency = A::Frequency;
    type Ticks = A::Ticks;

    fn now(&self) -> Self::Ticks {
        self.mux.alarm.now()
    }
}

impl<'a, A: Alarm<'a>> Alarm<'a> for VirtualMuxAlarm<'a, A> {
    fn set_alarm_client(&self, client: &'a dyn time::AlarmClient) {
        self.client.set(client);
    }

    fn disarm(&self) -> Result<(), ErrorCode> {
        if !self.armed.get() {
            return Ok(());
        }

        self.armed.set(false);

        let enabled = self.mux.enabled.get() - 1;
        self.mux.enabled.set(enabled);

        // If there are not more enabled alarms, disable the underlying alarm
        // completely.
        if enabled == 0 {
            let _ = self.mux.alarm.disarm();
        }
        Ok(())
    }

    fn is_armed(&self) -> bool {
        self.armed.get()
    }

    fn set_alarm(&self, reference: Self::Ticks, dt: Self::Ticks) {
        let enabled = self.mux.enabled.get();
        let half_max = Self::Ticks::half_max_value();
        // If the dt is more than half of the available time resolution, then we need to break
        // up the alarm into two internal alarms. This ensures that our internal comparisons of
        // now outside of range [ref, ref + dt) will trigger correctly even with latency in the
        // system
        let dt_reference = if dt > half_max.wrapping_add(self.minimum_dt()) {
            TickDtReference {
                reference,
                dt: dt.wrapping_sub(half_max),
                extended: true,
            }
        } else {
            TickDtReference {
                reference,
                dt,
                extended: false,
            }
        };
        self.dt_reference.set(dt_reference);
        // Ensure local variable has correct value when used below
        let dt = dt_reference.dt;

        if !self.armed.get() {
            self.mux.enabled.set(enabled + 1);
            self.armed.set(true);
        }

        // First alarm, so set it
        if enabled == 0 {
            //debug!("virtual_alarm: first alarm: set it.");
            self.mux.set_alarm(reference, dt);
        } else if !self.mux.firing.get() {
            // If firing is true, the mux will scan all the alarms after
            // firing and pick the soonest one so do not need to modify the
            // mux. Otherwise, this is an alarm
            // started in a separate code path (e.g., another event).
            // This new alarm fires sooner if two things are both true:
            //    1. The current earliest alarm expiration doesn't fall
            //    in the range of [reference, reference+dt): this means
            //    it is either in the past (before reference) or the future
            //    (reference + dt), AND
            //    2. now falls in the [reference, reference+dt)
            //    window of the current earliest alarm. This means the
            //    current earliest alarm hasn't fired yet (it is in the future).
            // -pal
            let cur_alarm = self.mux.alarm.get_alarm();
            let now = self.mux.alarm.now();
            let expiration = reference.wrapping_add(dt);
            if !cur_alarm.within_range(reference, expiration) {
                let next = self.mux.next_tick_vals.get();
                if next.map_or(true, |(next_reference, next_dt)| {
                    now.within_range(next_reference, next_reference.wrapping_add(next_dt))
                }) {
                    self.mux.set_alarm(reference, dt);
                }
            } else {
                // current alarm will fire earlier, keep it
            }
        }
    }

    fn get_alarm(&self) -> Self::Ticks {
        let dt_reference = self.dt_reference.get();
        let extension = if dt_reference.extended {
            Self::Ticks::half_max_value()
        } else {
            Self::Ticks::from(0)
        };
        dt_reference.reference_plus_dt().wrapping_add(extension)
    }

    fn minimum_dt(&self) -> Self::Ticks {
        self.mux.alarm.minimum_dt()
    }
}

impl<'a, A: Alarm<'a>> time::AlarmClient for VirtualMuxAlarm<'a, A> {
    fn alarm(&self) {
        self.client.map(|client| client.alarm());
    }
}

/// Structure to control a set of virtual alarms multiplexed together on top of a single alarm.
pub struct MuxAlarm<'a, A: Alarm<'a>> {
    /// Head of the linked list of virtual alarms multiplexed together.
    virtual_alarms: List<'a, VirtualMuxAlarm<'a, A>>,
    /// Number of virtual alarms that are currently enabled.
    enabled: Cell<usize>,
    /// Underlying alarm, over which the virtual alarms are multiplexed.
    alarm: &'a A,
    /// Whether we are firing; used to delay restarted alarms
    firing: Cell<bool>,
    /// Reference to next alarm
    next_tick_vals: Cell<Option<(A::Ticks, A::Ticks)>>,
}

impl<'a, A: Alarm<'a>> MuxAlarm<'a, A> {
    pub const fn new(alarm: &'a A) -> MuxAlarm<'a, A> {
        MuxAlarm {
            virtual_alarms: List::new(),
            enabled: Cell::new(0),
            alarm,
            firing: Cell::new(false),
            next_tick_vals: Cell::new(None),
        }
    }

    pub fn set_alarm(&self, reference: A::Ticks, dt: A::Ticks) {
        self.next_tick_vals.set(Some((reference, dt)));
        self.alarm.set_alarm(reference, dt);
    }

    pub fn disarm(&self) {
        self.next_tick_vals.set(None);
        let _ = self.alarm.disarm();
    }
}

impl<'a, A: Alarm<'a>> time::AlarmClient for MuxAlarm<'a, A> {
    /// When the underlying alarm has fired, we have to multiplex this event back to the virtual
    /// alarms that should now fire.
    fn alarm(&self) {
        // Check whether to fire each alarm. At this level, alarms are one-shot,
        // so a repeating client will set it again in the alarm() callback.
        self.firing.set(true);
        self.virtual_alarms
            .iter()
            .filter(|cur| {
                let dt_ref = cur.dt_reference.get();
                // It is very important to get the current now time as the reference could have been
                // set from now in the previous for_each iteration. We rely on the reference always
                // being in the past when compared to now.
                let now = self.alarm.now();
                cur.armed.get() && !now.within_range(dt_ref.reference, dt_ref.reference_plus_dt())
            })
            .for_each(|cur| {
                let dt_ref = cur.dt_reference.get();
                if dt_ref.extended {
                    // The first part of the extended alarm just fired, leave alarm armed with
                    // remaining time.
                    cur.dt_reference.set(TickDtReference {
                        reference: dt_ref.reference_plus_dt(),
                        dt: A::Ticks::half_max_value(),
                        extended: false,
                    });
                } else {
                    // Alarm fully expired, disarm and fire callback
                    cur.armed.set(false);
                    self.enabled.set(self.enabled.get() - 1);
                    //debug!("  Virtualizer: {:?} outside {:?}-{:?}, fire!", now, cur.reference.get(), cur.reference.get().wrapping_add(cur.dt.get()));
                    cur.alarm();
                }
            });
        self.firing.set(false);
        // Find the soonest alarm client (if any) and set the "next" underlying
        // alarm based on it.  This needs to happen after firing all expired
        // alarms since those may have reset new alarms.
        let now = self.alarm.now();
        let next = self
            .virtual_alarms
            .iter()
            .filter(|cur| cur.armed.get())
            .min_by_key(|cur| {
                let when = cur.dt_reference.get();
                // If the alarm has already expired, then it should be
                // considered as the earliest possible (0 ticks), so it
                // will trigger as soon as possible. This can happen
                // if the alarm expired *after* it was examined in the
                // above loop.
                if !now.within_range(when.reference, when.reference_plus_dt()) {
                    A::Ticks::from(0u32)
                } else {
                    when.reference_plus_dt().wrapping_sub(now)
                }
            });

        // Set the alarm.
        if let Some(valrm) = next {
            let dt_reference = valrm.dt_reference.get();
            self.set_alarm(dt_reference.reference, dt_reference.dt);
        } else {
            self.disarm();
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use time::*;

    struct FakeAlarm<'a> {
        now: Cell<Ticks32>,
        reference: Cell<Ticks32>,
        dt: Cell<Ticks32>,
        armed: Cell<bool>,
        client: OptionalCell<&'a dyn AlarmClient>,
    }

    impl FakeAlarm<'_> {
        fn new() -> Self {
            Self {
                now: Cell::new(1_000u32.into()),
                reference: Cell::new(0u32.into()),
                dt: Cell::new(0u32.into()),
                armed: Cell::new(false),
                client: OptionalCell::empty(),
            }
        }

        /// The emulated delay from when hardware timer to when kernel loop will
        /// run to check if alarms have fired or not.
        pub fn hardware_delay(&self) -> Ticks32 {
            Ticks32::from(10)
        }

        /// Fast forwards time to the next time we would fire an alarm and call client. Returns if
        /// alarm is still armed after triggering client
        pub fn trigger_next_alarm(&self) -> bool {
            if !self.is_armed() {
                return false;
            }
            self.now.set(
                self.reference
                    .get()
                    .wrapping_add(self.dt.get())
                    .wrapping_add(self.hardware_delay()),
            );
            self.client.map(|c| c.alarm());
            self.is_armed()
        }

        /// Runs for the specified number of ticks as long as there are alarms armed.
        pub fn run_for_ticks(&self, left: Ticks32) {
            let final_now = self.now.get().wrapping_add(left);
            let mut left = left.into_u32();

            while self.is_armed() {
                // Ensure that we have enough remaining ticks to handle the next alarm. Reference is
                // always in the past, so we need to figure out the difference between the reference
                // and now to discount the DT the alarm needs to wait by.
                let ticks_from_reference = self.now.get().wrapping_sub(self.reference.get());
                let dt = self
                    .dt
                    .get()
                    .into_u32()
                    .saturating_sub(ticks_from_reference.into_u32());
                if dt <= left {
                    left -= dt;
                    self.trigger_next_alarm();
                } else {
                    break;
                }
            }
            // Ensure that we ate up all of the time we were suppose to run for
            self.now.set(final_now);
        }
    }

    impl Time for FakeAlarm<'_> {
        type Ticks = Ticks32;
        type Frequency = Freq1KHz;

        fn now(&self) -> Ticks32 {
            // Every time we get now, it needs to increment to represent a free running timer
            let new_now = Ticks32::from(self.now.get().into_u32() + 1);
            self.now.set(new_now);
            new_now
        }
    }

    impl<'a> Alarm<'a> for FakeAlarm<'a> {
        fn set_alarm_client(&self, client: &'a dyn AlarmClient) {
            self.client.set(client);
        }

        fn set_alarm(&self, reference: Self::Ticks, dt: Self::Ticks) {
            self.reference.set(reference);
            self.dt.set(dt);
            self.armed.set(true);
        }

        fn get_alarm(&self) -> Self::Ticks {
            self.reference.get().wrapping_add(self.dt.get())
        }

        fn disarm(&self) -> Result<(), ErrorCode> {
            self.armed.set(false);
            Ok(())
        }

        fn is_armed(&self) -> bool {
            self.armed.get()
        }

        fn minimum_dt(&self) -> Self::Ticks {
            0u32.into()
        }
    }

    struct ClientCounter(Cell<usize>);
    impl ClientCounter {
        fn new() -> Self {
            Self(Cell::new(0))
        }
        fn count(&self) -> usize {
            self.0.get()
        }
    }
    impl AlarmClient for ClientCounter {
        fn alarm(&self) {
            self.0.set(self.0.get() + 1);
        }
    }

    fn run_until_disarmed(alarm: &FakeAlarm) {
        // Don't loop forever if we never disarm
        for _ in 0..20 {
            if !alarm.trigger_next_alarm() {
                return;
            }
        }
    }

    #[test]
    fn test_single_max_ticks_dt() {
        let alarm = FakeAlarm::new();
        let client = ClientCounter::new();
        let dt = u32::MAX.into();

        let mux = MuxAlarm::new(&alarm);
        alarm.set_alarm_client(&mux);

        let valarm = VirtualMuxAlarm::new(&mux);
        valarm.setup();
        valarm.set_alarm_client(&client);
        valarm.set_alarm(valarm.now(), dt);

        run_until_disarmed(&alarm);

        assert_eq!(client.count(), 1);
    }

    #[test]
    fn test_multiple_max_ticks_dt() {
        let alarm = FakeAlarm::new();
        let client = ClientCounter::new();
        let dt = u32::MAX.into();

        let mux = MuxAlarm::new(&alarm);
        alarm.set_alarm_client(&mux);

        let v_alarms = &[
            VirtualMuxAlarm::new(&mux),
            VirtualMuxAlarm::new(&mux),
            VirtualMuxAlarm::new(&mux),
        ];

        for (i, v) in v_alarms.iter().enumerate() {
            v.setup();
            v.set_alarm_client(&client);
            // Start with reference in the past since fake alarm now start with 1000 as now()
            v.set_alarm((i as u32).into(), dt);
        }
        run_until_disarmed(&alarm);

        assert_eq!(client.count(), 3);
    }

    struct SetAlarmClient<'a> {
        alarm: &'a VirtualMuxAlarm<'a, FakeAlarm<'a>>,
        dt: u32,
    }

    impl<'a> SetAlarmClient<'a> {
        fn new(alarm: &'a VirtualMuxAlarm<'a, FakeAlarm<'a>>, dt: u32) -> Self {
            Self { alarm, dt }
        }
    }

    impl AlarmClient for SetAlarmClient<'_> {
        fn alarm(&self) {
            self.alarm.set_alarm(self.alarm.now(), self.dt.into());
        }
    }

    #[test]
    fn test_second_alarm_set_during_first_alarm_firing() {
        let alarm = FakeAlarm::new();
        let mux = MuxAlarm::new(&alarm);
        alarm.set_alarm_client(&mux);

        // It is important that 0 is setup last so it is first in the linked list
        let v_alarms = &[VirtualMuxAlarm::new(&mux), VirtualMuxAlarm::new(&mux)];
        v_alarms[1].setup();
        v_alarms[0].setup();

        let set_v1_alarm = SetAlarmClient::new(&v_alarms[1], 100);
        v_alarms[0].set_alarm_client(&set_v1_alarm);

        let counter = ClientCounter::new();
        v_alarms[1].set_alarm_client(&counter);

        // Set the first alarm for 10 ticks in the future. This should then set the second alarm,
        // but not call fired for the second alarm until the timer gets to 100
        v_alarms[0].set_alarm(0.into(), 10.into());
        let still_armed = alarm.trigger_next_alarm();

        // Second alarm should not have triggered yet
        assert!(alarm.now().into_u32() < 100);
        assert_eq!(counter.count(), 0);
        assert!(still_armed);

        let still_armed = alarm.trigger_next_alarm();

        assert!(alarm.now().into_u32() > 100);
        assert_eq!(counter.count(), 1);
        assert!(!still_armed);
    }

    #[test]
    fn test_quick_alarms_not_skipped() {
        let alarm = FakeAlarm::new();
        let client = ClientCounter::new();

        let mux = MuxAlarm::new(&alarm);
        alarm.set_alarm_client(&mux);

        let v_alarms = &[
            VirtualMuxAlarm::new(&mux),
            VirtualMuxAlarm::new(&mux),
            VirtualMuxAlarm::new(&mux),
            VirtualMuxAlarm::new(&mux),
            VirtualMuxAlarm::new(&mux),
            VirtualMuxAlarm::new(&mux),
        ];

        // Precalculated the now and dt for all alarms. The DT should be large enough that the
        // initial check for firing is not true, but after evaluating all alarms, they would all
        // be firing. This happens since time "progresses" every time now() is called, which
        // emulates the clock progressing in real time.
        let now = alarm.now();
        let dt = alarm
            .hardware_delay()
            .wrapping_add(Ticks32::from(v_alarms.len() as u32));

        for v in v_alarms {
            v.setup();
            v.set_alarm_client(&client);
            v.set_alarm(now, dt);
        }

        // Set one alarm to trigger immediately (at the hardware delay) and the other alarm to
        // trigger in the future by some large degree
        v_alarms[0].set_alarm(now, 0.into());
        v_alarms[1].set_alarm(now, 1_000.into());

        // Run the alarm long enough for every alarm but the longer alarm to fire, and all other
        // alarms should have fired once
        alarm.run_for_ticks(Ticks32::from(750));
        assert_eq!(client.count(), v_alarms.len() - 1);
        // Run the alarm long enough for the longer alarm to fire as well and verify count
        alarm.run_for_ticks(Ticks32::from(750));
        assert_eq!(client.count(), v_alarms.len());
    }
}