capsules_core/spi_peripheral.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Provides userspace applications with the ability to communicate over the SPI
//! bus as a peripheral. Only supports chip select 0.
use core::cell::Cell;
use core::cmp;
use kernel::grant::{AllowRoCount, AllowRwCount, Grant, GrantKernelData, UpcallCount};
use kernel::hil::spi::ClockPhase;
use kernel::hil::spi::ClockPolarity;
use kernel::hil::spi::{SpiSlaveClient, SpiSlaveDevice};
use kernel::processbuffer::{ReadableProcessBuffer, WriteableProcessBuffer};
use kernel::syscall::{CommandReturn, SyscallDriver};
use kernel::utilities::cells::{OptionalCell, TakeCell};
use kernel::{ErrorCode, ProcessId};
/// Syscall driver number.
use crate::driver;
pub const DRIVER_NUM: usize = driver::NUM::SpiPeripheral as usize;
/// Ids for read-only allow buffers
mod ro_allow {
pub const WRITE: usize = 0;
/// The number of allow buffers the kernel stores for this grant
pub const COUNT: u8 = 1;
}
/// Ids for read-write allow buffers
mod rw_allow {
pub const READ: usize = 0;
/// The number of allow buffers the kernel stores for this grant
pub const COUNT: u8 = 1;
}
/// Suggested length for the SPI read and write buffer
pub const DEFAULT_READ_BUF_LENGTH: usize = 1024;
pub const DEFAULT_WRITE_BUF_LENGTH: usize = 1024;
// Since we provide an additional callback in slave mode for
// when the chip is selected, we have added a "PeripheralApp" struct
// that includes this new callback field.
#[derive(Default)]
pub struct PeripheralApp {
len: usize,
index: usize,
}
pub struct SpiPeripheral<'a, S: SpiSlaveDevice<'a>> {
spi_slave: &'a S,
busy: Cell<bool>,
kernel_read: TakeCell<'static, [u8]>,
kernel_write: TakeCell<'static, [u8]>,
kernel_len: Cell<usize>,
grants: Grant<
PeripheralApp,
UpcallCount<2>,
AllowRoCount<{ ro_allow::COUNT }>,
AllowRwCount<{ rw_allow::COUNT }>,
>,
current_process: OptionalCell<ProcessId>,
}
impl<'a, S: SpiSlaveDevice<'a>> SpiPeripheral<'a, S> {
pub fn new(
spi_slave: &'a S,
grants: Grant<
PeripheralApp,
UpcallCount<2>,
AllowRoCount<{ ro_allow::COUNT }>,
AllowRwCount<{ rw_allow::COUNT }>,
>,
) -> SpiPeripheral<'a, S> {
SpiPeripheral {
spi_slave,
busy: Cell::new(false),
kernel_len: Cell::new(0),
kernel_read: TakeCell::empty(),
kernel_write: TakeCell::empty(),
grants,
current_process: OptionalCell::empty(),
}
}
pub fn config_buffers(&self, read: &'static mut [u8], write: &'static mut [u8]) {
let len = cmp::min(read.len(), write.len());
self.kernel_len.set(len);
self.kernel_read.replace(read);
self.kernel_write.replace(write);
}
// Assumes checks for busy/etc. already done
// Updates app.index to be index + length of op
fn do_next_read_write(&self, app: &mut PeripheralApp, kernel_data: &GrantKernelData) {
let write_len = self.kernel_write.map_or(0, |kwbuf| {
let mut start = app.index;
let tmp_len = kernel_data
.get_readonly_processbuffer(ro_allow::WRITE)
.and_then(|write| {
write.enter(|src| {
let len = cmp::min(app.len - start, self.kernel_len.get());
let end = cmp::min(start + len, src.len());
start = cmp::min(start, end);
for (i, c) in src[start..end].iter().enumerate() {
kwbuf[i] = c.get();
}
end - start
})
})
.unwrap_or(0);
app.index = start + tmp_len;
tmp_len
});
// TODO verify SPI return value
let _ = self.spi_slave.read_write_bytes(
self.kernel_write.take(),
self.kernel_read.take(),
write_len,
);
}
}
impl<'a, S: SpiSlaveDevice<'a>> SyscallDriver for SpiPeripheral<'a, S> {
/// Provide read/write buffers to SpiPeripheral
///
/// - allow_num 0: Provides a buffer to receive transfers into.
/// Provide read-only buffers to SpiPeripheral
///
/// - allow_num 0: Provides a buffer to transmit
/// - 0: driver existence check
/// - 1: read/write buffers
/// - read and write buffers optional
/// - fails if arg1 (bytes to write) >
/// write_buffer.len()
/// - 2: get chip select
/// - returns current selected peripheral
/// - in slave mode, always returns 0
/// - 3: set clock phase on current peripheral
/// - 0 is sample leading
/// - non-zero is sample trailing
/// - 4: get clock phase on current peripheral
/// - 0 is sample leading
/// - non-zero is sample trailing
/// - 5: set clock polarity on current peripheral
/// - 0 is idle low
/// - non-zero is idle high
/// - 6: get clock polarity on current peripheral
/// - 0 is idle low
/// - non-zero is idle high
/// - x: lock spi
/// - if you perform an operation without the lock,
/// it implicitly acquires the lock before the
/// operation and releases it after
/// - while an app holds the lock no other app can issue
/// operations on SPI (they are buffered)
/// - not implemented or currently supported
/// - x+1: unlock spi
/// - does nothing if lock not held
/// - not implemented or currently supported
fn command(
&self,
command_num: usize,
arg1: usize,
_: usize,
process_id: ProcessId,
) -> CommandReturn {
if command_num == 0 {
// Handle unconditional driver existence check.
return CommandReturn::success();
}
// Check if this driver is free, or already dedicated to this process.
let match_or_empty_or_nonexistant = self.current_process.map_or(true, |current_process| {
self.grants
.enter(current_process, |_, _| current_process == process_id)
.unwrap_or(true)
});
if match_or_empty_or_nonexistant {
self.current_process.set(process_id);
} else {
return CommandReturn::failure(ErrorCode::NOMEM);
}
match command_num {
1 => {
// read_write_bytes
if self.busy.get() {
return CommandReturn::failure(ErrorCode::BUSY);
}
self.grants
.enter(process_id, |app, kernel_data| {
// When we do a read/write, the read part is optional.
// So there are three cases:
// 1) Write and read buffers present: len is min of lengths
// 2) Only write buffer present: len is len of write
// 3) No write buffer present: no operation
let wlen = kernel_data
.get_readonly_processbuffer(ro_allow::WRITE)
.map_or(0, |write| write.len());
let rlen = kernel_data
.get_readwrite_processbuffer(rw_allow::READ)
.map_or(0, |read| read.len());
// Note that non-shared and 0-sized read buffers both report 0 as size
let len = if rlen == 0 { wlen } else { wlen.min(rlen) };
if len >= arg1 && arg1 > 0 {
app.len = arg1;
app.index = 0;
self.busy.set(true);
self.do_next_read_write(app, kernel_data);
CommandReturn::success()
} else {
/* write buffer too small, or zero length write */
CommandReturn::failure(ErrorCode::INVAL)
}
})
.unwrap_or(CommandReturn::failure(ErrorCode::NOMEM))
}
2 => {
// get chip select
// Only 0 is supported
CommandReturn::success_u32(0)
}
3 => {
// set phase
match match arg1 {
0 => self.spi_slave.set_phase(ClockPhase::SampleLeading),
_ => self.spi_slave.set_phase(ClockPhase::SampleTrailing),
} {
Ok(()) => CommandReturn::success(),
Err(error) => CommandReturn::failure(error),
}
}
4 => {
// get phase
CommandReturn::success_u32(self.spi_slave.get_phase() as u32)
}
5 => {
// set polarity
match match arg1 {
0 => self.spi_slave.set_polarity(ClockPolarity::IdleLow),
_ => self.spi_slave.set_polarity(ClockPolarity::IdleHigh),
} {
Ok(()) => CommandReturn::success(),
Err(error) => CommandReturn::failure(error),
}
}
6 => {
// get polarity
CommandReturn::success_u32(self.spi_slave.get_polarity() as u32)
}
_ => CommandReturn::failure(ErrorCode::NOSUPPORT),
}
}
fn allocate_grant(&self, processid: ProcessId) -> Result<(), kernel::process::Error> {
self.grants.enter(processid, |_, _| {})
}
}
impl<'a, S: SpiSlaveDevice<'a>> SpiSlaveClient for SpiPeripheral<'a, S> {
fn read_write_done(
&self,
writebuf: Option<&'static mut [u8]>,
readbuf: Option<&'static mut [u8]>,
length: usize,
_status: Result<(), ErrorCode>,
) {
self.current_process.map(|process_id| {
let _ = self.grants.enter(process_id, move |app, kernel_data| {
let rbuf = readbuf.inspect(|src| {
let index = app.index;
let _ = kernel_data
.get_readwrite_processbuffer(rw_allow::READ)
.and_then(|read| {
read.mut_enter(|dest| {
// Need to be careful that app_read hasn't changed
// under us, so check all values against actual
// slice lengths.
//
// If app_read is shorter than before, and shorter
// than what we have read would require, then truncate.
// -pal 12/9/20
let end = index;
let start = index - length;
let end = cmp::min(end, cmp::min(src.len(), dest.len()));
// If the new endpoint is earlier than our expected
// startpoint, we set the startpoint to be the same;
// This results in a zero-length operation. -pal 12/9/20
let start = cmp::min(start, end);
let dest_area = &dest[start..end];
let real_len = end - start;
for (i, c) in src[0..real_len].iter().enumerate() {
dest_area[i].set(*c);
}
})
});
});
self.kernel_read.put(rbuf);
self.kernel_write.put(writebuf);
if app.index == app.len {
self.busy.set(false);
let len = app.len;
app.len = 0;
app.index = 0;
kernel_data.schedule_upcall(0, (len, 0, 0)).ok();
} else {
self.do_next_read_write(app, kernel_data);
}
});
});
}
// Simple callback for when chip has been selected
fn chip_selected(&self) {
self.current_process.map(|process_id| {
let _ = self.grants.enter(process_id, move |app, kernel_data| {
let len = app.len;
kernel_data.schedule_upcall(1, (len, 0, 0)).ok();
});
});
}
}