primeorder/
point_arithmetic.rs
1use elliptic_curve::{subtle::ConditionallySelectable, Field};
7
8use crate::{AffinePoint, PrimeCurveParams, ProjectivePoint};
9
10mod sealed {
11 use crate::{AffinePoint, PrimeCurveParams, ProjectivePoint};
12
13 pub trait PointArithmetic<C: PrimeCurveParams> {
18 fn add(lhs: &ProjectivePoint<C>, rhs: &ProjectivePoint<C>) -> ProjectivePoint<C>;
20
21 fn add_mixed(lhs: &ProjectivePoint<C>, rhs: &AffinePoint<C>) -> ProjectivePoint<C>;
23
24 fn double(point: &ProjectivePoint<C>) -> ProjectivePoint<C>;
26 }
27}
28
29pub(crate) use sealed::PointArithmetic;
31
32pub struct EquationAIsGeneric {}
35
36impl<C: PrimeCurveParams> PointArithmetic<C> for EquationAIsGeneric {
37 fn add(lhs: &ProjectivePoint<C>, rhs: &ProjectivePoint<C>) -> ProjectivePoint<C> {
45 let b3 = C::FieldElement::from(3) * C::EQUATION_B;
46
47 let t0 = lhs.x * rhs.x; let t1 = lhs.y * rhs.y; let t2 = lhs.z * rhs.z; let t3 = lhs.x + lhs.y; let t4 = rhs.x + rhs.y; let t3 = t3 * t4; let t4 = t0 + t1; let t3 = t3 - t4; let t4 = lhs.x + lhs.z; let t5 = rhs.x + rhs.z; let t4 = t4 * t5; let t5 = t0 + t2; let t4 = t4 - t5; let t5 = lhs.y + lhs.z; let x3 = rhs.y + rhs.z; let t5 = t5 * x3; let x3 = t1 + t2; let t5 = t5 - x3; let z3 = C::EQUATION_A * t4; let x3 = b3 * t2; let z3 = x3 + z3; let x3 = t1 - z3; let z3 = t1 + z3; let y3 = x3 * z3; let t1 = t0 + t0; let t1 = t1 + t0; let t2 = C::EQUATION_A * t2; let t4 = b3 * t4; let t1 = t1 + t2; let t2 = t0 - t2; let t2 = C::EQUATION_A * t2; let t4 = t4 + t2; let t0 = t1 * t4; let y3 = y3 + t0; let t0 = t5 * t4; let x3 = t3 * x3; let x3 = x3 - t0; let t0 = t3 * t1; let z3 = t5 * z3; let z3 = z3 + t0; ProjectivePoint {
89 x: x3,
90 y: y3,
91 z: z3,
92 }
93 }
94
95 fn add_mixed(lhs: &ProjectivePoint<C>, rhs: &AffinePoint<C>) -> ProjectivePoint<C> {
103 let b3 = C::EQUATION_B * C::FieldElement::from(3);
104
105 let t0 = lhs.x * rhs.x; let t1 = lhs.y * rhs.y; let t3 = rhs.x + rhs.y; let t4 = lhs.x + lhs.y; let t3 = t3 * t4; let t4 = t0 + t1; let t3 = t3 - t4; let t4 = rhs.x * lhs.z; let t4 = t4 + lhs.x; let t5 = rhs.y * lhs.z; let t5 = t5 + lhs.y; let z3 = C::EQUATION_A * t4; let x3 = b3 * lhs.z; let z3 = x3 + z3; let x3 = t1 - z3; let z3 = t1 + z3; let y3 = x3 * z3; let t1 = t0 + t0; let t1 = t1 + t0; let t2 = C::EQUATION_A * lhs.z; let t4 = b3 * t4; let t1 = t1 + t2; let t2 = t0 - t2; let t2 = C::EQUATION_A * t2; let t4 = t4 + t2; let t0 = t1 * t4; let y3 = y3 + t0; let t0 = t5 * t4; let x3 = t3 * x3; let x3 = x3 - t0; let t0 = t3 * t1; let z3 = t5 * z3; let z3 = z3 + t0; let mut ret = ProjectivePoint {
140 x: x3,
141 y: y3,
142 z: z3,
143 };
144 ret.conditional_assign(lhs, rhs.is_identity());
145 ret
146 }
147
148 fn double(point: &ProjectivePoint<C>) -> ProjectivePoint<C> {
156 let b3 = C::EQUATION_B * C::FieldElement::from(3);
157
158 let t0 = point.x * point.x; let t1 = point.y * point.y; let t2 = point.z * point.z; let t3 = point.x * point.y; let t3 = t3 + t3; let z3 = point.x * point.z; let z3 = z3 + z3; let x3 = C::EQUATION_A * z3; let y3 = b3 * t2; let y3 = x3 + y3; let x3 = t1 - y3; let y3 = t1 + y3; let y3 = x3 * y3; let x3 = t3 * x3; let z3 = b3 * z3; let t2 = C::EQUATION_A * t2; let t3 = t0 - t2; let t3 = C::EQUATION_A * t3; let t3 = t3 + z3; let z3 = t0 + t0; let t0 = z3 + t0; let t0 = t0 + t2; let t0 = t0 * t3; let y3 = y3 + t0; let t2 = point.y * point.z; let t2 = t2 + t2; let t0 = t2 * t3; let x3 = x3 - t0; let z3 = t2 * t1; let z3 = z3 + z3; let z3 = z3 + z3; ProjectivePoint {
191 x: x3,
192 y: y3,
193 z: z3,
194 }
195 }
196}
197
198pub struct EquationAIsMinusThree {}
200
201impl<C: PrimeCurveParams> PointArithmetic<C> for EquationAIsMinusThree {
202 fn add(lhs: &ProjectivePoint<C>, rhs: &ProjectivePoint<C>) -> ProjectivePoint<C> {
210 debug_assert_eq!(
211 C::EQUATION_A,
212 -C::FieldElement::from(3),
213 "this implementation is only valid for C::EQUATION_A = -3"
214 );
215
216 let xx = lhs.x * rhs.x; let yy = lhs.y * rhs.y; let zz = lhs.z * rhs.z; let xy_pairs = ((lhs.x + lhs.y) * (rhs.x + rhs.y)) - (xx + yy); let yz_pairs = ((lhs.y + lhs.z) * (rhs.y + rhs.z)) - (yy + zz); let xz_pairs = ((lhs.x + lhs.z) * (rhs.x + rhs.z)) - (xx + zz); let bzz_part = xz_pairs - (C::EQUATION_B * zz); let bzz3_part = bzz_part.double() + bzz_part; let yy_m_bzz3 = yy - bzz3_part; let yy_p_bzz3 = yy + bzz3_part; let zz3 = zz.double() + zz; let bxz_part = (C::EQUATION_B * xz_pairs) - (zz3 + xx); let bxz3_part = bxz_part.double() + bxz_part; let xx3_m_zz3 = xx.double() + xx - zz3; ProjectivePoint {
234 x: (yy_p_bzz3 * xy_pairs) - (yz_pairs * bxz3_part), y: (yy_p_bzz3 * yy_m_bzz3) + (xx3_m_zz3 * bxz3_part), z: (yy_m_bzz3 * yz_pairs) + (xy_pairs * xx3_m_zz3), }
238 }
239
240 fn add_mixed(lhs: &ProjectivePoint<C>, rhs: &AffinePoint<C>) -> ProjectivePoint<C> {
248 debug_assert_eq!(
249 C::EQUATION_A,
250 -C::FieldElement::from(3),
251 "this implementation is only valid for C::EQUATION_A = -3"
252 );
253
254 let xx = lhs.x * rhs.x; let yy = lhs.y * rhs.y; let xy_pairs = ((lhs.x + lhs.y) * (rhs.x + rhs.y)) - (xx + yy); let yz_pairs = (rhs.y * lhs.z) + lhs.y; let xz_pairs = (rhs.x * lhs.z) + lhs.x; let bz_part = xz_pairs - (C::EQUATION_B * lhs.z); let bz3_part = bz_part.double() + bz_part; let yy_m_bzz3 = yy - bz3_part; let yy_p_bzz3 = yy + bz3_part; let z3 = lhs.z.double() + lhs.z; let bxz_part = (C::EQUATION_B * xz_pairs) - (z3 + xx); let bxz3_part = bxz_part.double() + bxz_part; let xx3_m_zz3 = xx.double() + xx - z3; let mut ret = ProjectivePoint {
271 x: (yy_p_bzz3 * xy_pairs) - (yz_pairs * bxz3_part), y: (yy_p_bzz3 * yy_m_bzz3) + (xx3_m_zz3 * bxz3_part), z: (yy_m_bzz3 * yz_pairs) + (xy_pairs * xx3_m_zz3), };
275 ret.conditional_assign(lhs, rhs.is_identity());
276 ret
277 }
278
279 fn double(point: &ProjectivePoint<C>) -> ProjectivePoint<C> {
287 debug_assert_eq!(
288 C::EQUATION_A,
289 -C::FieldElement::from(3),
290 "this implementation is only valid for C::EQUATION_A = -3"
291 );
292
293 let xx = point.x.square(); let yy = point.y.square(); let zz = point.z.square(); let xy2 = (point.x * point.y).double(); let xz2 = (point.x * point.z).double(); let bzz_part = (C::EQUATION_B * zz) - xz2; let bzz3_part = bzz_part.double() + bzz_part; let yy_m_bzz3 = yy - bzz3_part; let yy_p_bzz3 = yy + bzz3_part; let y_frag = yy_p_bzz3 * yy_m_bzz3; let x_frag = yy_m_bzz3 * xy2; let zz3 = zz.double() + zz; let bxz2_part = (C::EQUATION_B * xz2) - (zz3 + xx); let bxz6_part = bxz2_part.double() + bxz2_part; let xx3_m_zz3 = xx.double() + xx - zz3; let y = y_frag + (xx3_m_zz3 * bxz6_part); let yz2 = (point.y * point.z).double(); let x = x_frag - (bxz6_part * yz2); let z = (yz2 * yy).double().double(); ProjectivePoint { x, y, z }
317 }
318}