1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Segger RTT implementation.
//!
//! RTT is a protocol for sending debugging messages to a connected host. The
//! embedded platform configures a portion of memory in a special way, and then
//! the host uses a JTAG connection to read the messages out of the chip's
//! memory.
//!
//! Receiving RTT Messages
//! ----------------------
//!
//! With the jlink tools, receiving RTT messages is a two step process. First,
//! open a JTAG connection with a command like:
//!
//! ```shell
//! $ JLinkExe -device nrf52 -if swd -speed 1000 -autoconnect 1
//! ```
//!
//! Then, use the `JLinkRTTClient` tool in a different terminal to print the
//! messages:
//!
//! ```shell
//! $ JLinkRTTClient
//! ```
//!
//! Todo
//! ----
//!
//! - Implement receive functionality.
//!
//! Usage
//! -----
//!
//! ```rust,ignore
//! pub struct Platform {
//! // Other fields omitted for clarity
//! console: &'static capsules::console::Console<'static>,
//! }
//! ```
//!
//! In `main()`:
//!
//! ```rust,ignore
//! # use kernel::static_init;
//! # use capsules::virtual_alarm::VirtualMuxAlarm;
//!
//! let virtual_alarm_rtt = static_init!(
//! VirtualMuxAlarm<'static, nrf5x::rtc::Rtc>,
//! VirtualMuxAlarm::new(mux_alarm)
//! );
//! virtual_alarm_rtt.setup();
//!
//! let rtt_memory = static_init!(
//! capsules::segger_rtt::SeggerRttMemory,
//! capsules::segger_rtt::SeggerRttMemory::new(b"Terminal\0",
//! &mut capsules::segger_rtt::UP_BUFFER,
//! b"Terminal\0",
//! &mut capsules::segger_rtt::DOWN_BUFFER)
//! );
//!
//! let rtt = static_init!(
//! capsules::segger_rtt::SeggerRtt<VirtualMuxAlarm<'static, nrf5x::rtc::Rtc>>,
//! capsules::segger_rtt::SeggerRtt::new(virtual_alarm_rtt, rtt_memory,
//! &mut capsules::segger_rtt::UP_BUFFER,
//! &mut capsules::segger_rtt::DOWN_BUFFER)
//! );
//! virtual_alarm_rtt.set_client(rtt);
//!
//! let console = static_init!(
//! capsules::console::Console<'static>,
//! capsules::console::Console::new(
//! rtt,
//! &mut capsules::console::WRITE_BUF,
//! &mut capsules::console::READ_BUF,
//! board_kernel.create_grant(&grant_cap)
//! )
//! );
//! kernel::hil::uart::UART::set_client(rtt, console);
//! console.initialize();
//! ```
use core::cell::Cell;
use core::marker::PhantomData;
use core::ops::Index;
use core::sync::atomic::{fence, Ordering};
use kernel::hil;
use kernel::hil::time::ConvertTicks;
use kernel::hil::uart;
use kernel::utilities::cells::{OptionalCell, TakeCell, VolatileCell};
use kernel::ErrorCode;
/// Suggested length for the up buffer to pass to the Segger RTT capsule.
pub const DEFAULT_UP_BUFFER_LENGTH: usize = 1024;
/// Suggested length for the down buffer to pass to the Segger RTT capsule.
pub const DEFAULT_DOWN_BUFFER_LENGTH: usize = 32;
/// Milliseconds to wait to flush tx buffer after writing
const TX_MS_DELAY: u32 = 1;
/// Milliseconds to wait between checking if rx data is available
const RX_MS_DELAY: u32 = 100;
/// This structure is defined by the segger RTT protocol. It must exist in
/// memory in exactly this form so that the segger JTAG tool can find it in the
/// chip's memory and read and write messages to the appropriate buffers.
#[repr(C)]
pub struct SeggerRttMemory<'a> {
id: [u8; 16],
number_up_buffers: u32,
number_down_buffers: u32,
up_buffer: SeggerRttBuffer<'a>,
down_buffer: SeggerRttBuffer<'a>,
}
#[repr(C)]
pub struct SeggerRttBuffer<'a> {
name: *const u8, // Pointer to the name of this channel. Must be a 4 byte thin pointer.
// These fields are marked as `pub` to allow access in the panic handler.
pub buffer: *const VolatileCell<u8>, // Pointer to the buffer for this channel.
pub length: u32,
pub write_position: VolatileCell<u32>,
read_position: VolatileCell<u32>,
flags: u32,
_lifetime: PhantomData<&'a ()>,
}
impl<'a> Index<usize> for SeggerRttBuffer<'a> {
type Output = VolatileCell<u8>;
fn index(&self, index: usize) -> &Self::Output {
let index = index as isize;
if index >= self.length as isize {
panic!("Index out of bounds {}/{}", index, self.length)
} else {
unsafe { &*self.buffer.offset(index) }
}
}
}
impl<'a> SeggerRttMemory<'a> {
pub fn new_raw(
up_buffer_name: &'a [u8],
up_buffer: &'a [VolatileCell<u8>],
down_buffer_name: &'a [u8],
down_buffer: &'a [VolatileCell<u8>],
) -> SeggerRttMemory<'a> {
SeggerRttMemory {
// This field is a magic value that must be set to "SEGGER RTT" for the debugger to
// recognize it when scanning the memory.
//
// In principle, there could be a risk that the value is duplicated elsewhere in
// memory, therefore confusing the debugger. However in practice this hasn't caused any
// known problem so far. If needed, this ID could be scrambled here, with the real magic
// value being written only when this object is fully initialized.
id: *b"SEGGER RTT\0\0\0\0\0\0",
number_up_buffers: 1,
number_down_buffers: 1,
up_buffer: SeggerRttBuffer {
name: up_buffer_name.as_ptr(),
buffer: up_buffer.as_ptr(),
length: up_buffer.len() as u32,
write_position: VolatileCell::new(0),
read_position: VolatileCell::new(0),
flags: 0,
_lifetime: PhantomData,
},
down_buffer: SeggerRttBuffer {
name: down_buffer_name.as_ptr(),
buffer: down_buffer.as_ptr(),
length: down_buffer.len() as u32,
write_position: VolatileCell::new(0),
read_position: VolatileCell::new(0),
flags: 0,
_lifetime: PhantomData,
},
}
}
/// This getter allows access to the underlying buffer in the panic handler.
/// The result is a pointer so that only `unsafe` code can actually dereference it - this is to
/// restrict this priviledged access to the panic handler.
pub fn get_up_buffer_ptr(&self) -> *const SeggerRttBuffer<'a> {
&self.up_buffer
}
pub fn write_sync(&self, buf: &[u8]) {
let mut index = self.up_buffer.write_position.get() as usize;
fence(Ordering::SeqCst);
let buffer_len = self.up_buffer.length as usize;
for c in buf.iter() {
index = (index + 1) % buffer_len;
while self.up_buffer.read_position.get() as usize == index {
core::hint::spin_loop();
}
self.up_buffer[index].set(*c);
fence(Ordering::SeqCst);
self.up_buffer.write_position.set(index as u32);
fence(Ordering::SeqCst);
}
}
}
pub struct SeggerRtt<'a, A: hil::time::Alarm<'a>> {
alarm: &'a A, // Dummy alarm so we can get a callback.
config: TakeCell<'a, SeggerRttMemory<'a>>,
tx_client: OptionalCell<&'a dyn uart::TransmitClient>,
tx_client_buffer: TakeCell<'static, [u8]>,
tx_len: Cell<usize>,
rx_client: OptionalCell<&'a dyn uart::ReceiveClient>,
rx_client_buffer: TakeCell<'static, [u8]>,
rx_cursor: Cell<usize>,
rx_len: Cell<usize>,
}
impl<'a, A: hil::time::Alarm<'a>> SeggerRtt<'a, A> {
pub fn new(alarm: &'a A, config: &'a mut SeggerRttMemory<'a>) -> SeggerRtt<'a, A> {
SeggerRtt {
alarm,
config: TakeCell::new(config),
tx_client: OptionalCell::empty(),
tx_client_buffer: TakeCell::empty(),
tx_len: Cell::new(0),
rx_client: OptionalCell::empty(),
rx_client_buffer: TakeCell::empty(),
rx_cursor: Cell::new(0),
rx_len: Cell::new(0),
}
}
}
impl<'a, A: hil::time::Alarm<'a>> uart::Transmit<'a> for SeggerRtt<'a, A> {
fn set_transmit_client(&self, client: &'a dyn uart::TransmitClient) {
self.tx_client.set(client);
}
fn transmit_buffer(
&self,
tx_data: &'static mut [u8],
tx_len: usize,
) -> Result<(), (ErrorCode, &'static mut [u8])> {
if self.config.is_some() {
self.config.map(|config| {
// Copy the incoming data into the buffer. Once we increment
// the `write_position` the RTT listener will go ahead and read
// the message from us.
let mut index = config.up_buffer.write_position.get() as usize;
fence(Ordering::SeqCst);
let buffer_len = config.up_buffer.length as usize;
for i in 0..tx_len {
config.up_buffer[(i + index) % buffer_len].set(tx_data[i]);
}
fence(Ordering::SeqCst);
index = (index + tx_len) % buffer_len;
config.up_buffer.write_position.set(index as u32);
fence(Ordering::SeqCst);
self.tx_len.set(tx_len);
// Save the client buffer so we can pass it back with the callback.
self.tx_client_buffer.replace(tx_data);
// Start a short timer so that we get a callback and can issue the callback to
// the client.
//
// This heuristic interval was tested with the console capsule on a nRF52840-DK
// board, passing buffers up to 1500 bytes from userspace. 100 micro-seconds
// was too short, even for buffers as small as 128 bytes. 1 milli-second seems to
// be reliable.
let delay = self.alarm.ticks_from_ms(TX_MS_DELAY);
self.alarm.set_alarm(self.alarm.now(), delay);
});
Ok(())
} else {
Err((ErrorCode::BUSY, tx_data))
}
}
fn transmit_word(&self, _word: u32) -> Result<(), ErrorCode> {
Err(ErrorCode::FAIL)
}
fn transmit_abort(&self) -> Result<(), ErrorCode> {
Ok(())
}
}
impl<'a, A: hil::time::Alarm<'a>> hil::time::AlarmClient for SeggerRtt<'a, A> {
fn alarm(&self) {
self.tx_client.map(|client| {
self.tx_client_buffer.take().map(|buffer| {
client.transmitted_buffer(buffer, self.tx_len.get(), Ok(()));
});
});
self.rx_client.map(|client| {
self.rx_client_buffer.take().map(|buffer| {
self.config.map(|config| {
let write_position = &config.down_buffer.write_position;
let read_position = &config.down_buffer.read_position;
// ensure all reads/writes to position data has already happened
fence(Ordering::SeqCst);
while self.rx_cursor.get() < self.rx_len.get()
&& write_position.get() != read_position.get()
{
buffer[self.rx_cursor.get()] =
config.down_buffer[read_position.get() as usize].get();
// ensure output data ordered before updating read_position
fence(Ordering::SeqCst);
read_position.set((read_position.get() + 1) % config.down_buffer.length);
self.rx_cursor.set(self.rx_cursor.get() + 1);
}
// "flush" the final rx_cursor update
fence(Ordering::SeqCst);
});
if self.rx_cursor.get() == self.rx_len.get() {
client.received_buffer(buffer, self.rx_len.get(), Ok(()), uart::Error::None);
} else {
let delay = self.alarm.ticks_from_ms(RX_MS_DELAY);
self.alarm.set_alarm(self.alarm.now(), delay);
self.rx_client_buffer.put(Some(buffer))
}
});
});
}
}
// Dummy implementation so this can act as the underlying UART for a
// virtualized UART MUX. -pal 1/10/19
impl<'a, A: hil::time::Alarm<'a>> uart::Configure for SeggerRtt<'a, A> {
fn configure(&self, _parameters: uart::Parameters) -> Result<(), ErrorCode> {
Err(ErrorCode::FAIL)
}
}
impl<'a, A: hil::time::Alarm<'a>> uart::Receive<'a> for SeggerRtt<'a, A> {
fn set_receive_client(&self, client: &'a dyn uart::ReceiveClient) {
self.rx_client.set(client)
}
fn receive_buffer(
&self,
buffer: &'static mut [u8],
len: usize,
) -> Result<(), (ErrorCode, &'static mut [u8])> {
self.rx_client_buffer.put(Some(buffer));
self.rx_len.set(len);
self.rx_cursor.set(0);
if !self.alarm.is_armed() {
let delay = self.alarm.ticks_from_ms(RX_MS_DELAY);
self.alarm.set_alarm(self.alarm.now(), delay);
}
Ok(())
}
fn receive_word(&self) -> Result<(), ErrorCode> {
Err(ErrorCode::FAIL)
}
fn receive_abort(&self) -> Result<(), ErrorCode> {
Ok(())
}
}