1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! 6loWPAN (IPv6 over Low-Power Wireless Networks) is standard for compressing
//! and fragmenting IPv6 packets over low power wireless networks, particularly
//! ones with MTUs (Minimum Transmission Units) smaller than 1280 octets, like
//! IEEE 802.15.4. 6loWPAN compression and fragmentation are defined in RFC 4944
//! and RFC 6282.
//!
//! This module implements 6LoWPAN compression and reception, including
//! compression, fragmentation, and reassembly. It allows a client to convert
//! between a complete IPv6 packets and a series of Mac-layer frames, and vice
//! versa. On the transmission end, IPv6 headers are compressed and packets
//! fragmented if they are larger than the Mac layer MTU size. For reception,
//! IPv6 packets are decompressed and reassembled from fragments and clients
//! recieve callbacks for each full IPv6 packet.
//!
//! Usage
//! -----
//!
//! The Sixlowpan library exposes two different interfaces for the transmit path
//! and the receive path. Below, both interfaces are described in detail.
//!
//! Transmit
//! --------
//! For a layer interested in sending a packet, this library exposes a
//! [TxState](struct.TxState.html) struct that statefully compresses an
//! [IP6Packet](struct.IP6Packet.html) struct. First, the `TxState` object
//! is initialized for compressing a new packet by calling the `TxState.init`
//! method. The caller then repeatedly calls `TxState.next_fragment`, which
//! returns the next frame to be send (or indicates that the transmission
//! is complete). Note that the upper layer is responsible for sending each
//! frame, and this library is only responsible for producing compressed frames.
//!
//! Receive
//! -------
//! The Sixlowpan library is responsible for receiving and reassembling
//! individual 6LoWPAN-compressed frames. Upper layers interested in receiving
//! the fully reassembled and decompressed IPv6 packet implement the
//! [SixlowpanRxClient](trait.SixlowpanRxClient.html) trait, which is called
//! after a packet is fully received.
//!
//! At a high level, clients interact with this module as shown in the diagrams
//! below:
//!
//! ```txt
//! Transmit:
//!
//! +-----------+
//! |Upper Layer|
//! +-----------+
//! | ^
//! | |
//! next_fragment(..packet..)
//! | |
//! v |
//! +---------+
//! |Sixlowpan|
//! +---------+
//! ...
//! +---------------+
//! |SixlowpanClient|
//! +---------------+
//! ^
//! |
//! send_done(..)
//! |
//! +---------+
//! |Sixlowpan|
//! +---------+
//! ```
//!
//! ```txt
//! Receive:
//!
//! +---------------+
//! |SixlowpanClient|
//! +---------------+
//! ^
//! |
//! receive(..buf..)
//! |
//! +---------+
//! |Sixlowpan|
//! +---------+
//! ```
//!
//! ```txt
//! Initialization:
//!
//! +-----------+
//! |Upper Layer|
//! +-----------+
//! |
//! set_client(client)
//! |
//! v
//! +---------+
//! |Sixlowpan|
//! +---------+
//! ```
//!
//! Examples
//! -----
//! Examples of how to interface and use this layer are included in the file
//! `boards/imix/src/lowpan_frag_dummy.rs`. Some set up is required in
//! the `boards/imix/src/main.rs` file, but for the testing suite, a helper
//! initialization function is included in the `lowpan_frag_dummy.rs` file.
// Internal Design
// ---------------
// The overall 6LoWPAN protocol is non-trivial, and as a result, this layer
// is fairly complex. There are two main aspects of the 6LoWPAN layer; first
// is compression, which is abstracted as a distinct library (found at
// `capsules/src/net/sixlowpan/sixlowpan_compression.rs`), and second is the
// fragmentation and reassembly layer, which is implemented in this file.
// The documentation below describes the different components of the
// fragmentation/reassembly functionality (for 6LoWPAN compression
// documentation, please consult `capsules/src/net/sixlowpan/sixlowpan_compression.rs`).
//
// This layer adds several new structures; principally, it implements the
// Sixlowpan, TxState, and RxState structs and it also defines the
// SixlowpanRxClient trait. The Sixlowpan struct is responsible
// for keeping track of the global *receive* state at this layer, and contains
// a list of RxState objects. The TxState is responsible for
// maintaining the current transmit compression state, and how much of the current
// IPv6 packet has been compressed. The RxState structs maintain the
// reassembly state corresponding to a single IPv6 packet. Note that since
// they are maintained as a list, several RxStates can be allocated at compile
// time, and each RxState corresponds to a distinct IPv6 packet that can be
// reassembled simultaneously. Finally, the SixlowpanRxClient trait defines
// the interface between the upper (IP) layer and the Sixlowpan layer for
// reception. Each object is examined in greater detail below:
//
// Sixlowpan:
// The main `Sixlowpan` struct is responsible for maintaining global reception
// and reassembly state for received radio frames. The struct contains a list
// of RxState objects, which serve as reassembly buffers for different IPv6
// packets. This object implements the RxClient trait, and is set to be the
// client for the MAC-layer radio. Whenever an RxState is fully reassembled,
// the upper layers receive a callback through the `SixlowpanRxState` trait.
//
// TxState:
// The TxState struct maintains the state necessary to incrementally fragment
// a full IPv6 packet. This includes the source/destination Mac
// addresses and PanIDs, frame-level security options, a total datagram size,
// and the current offset into the datagram. This struct also maintains some
// minimal global transmit state, including the global datagram tag and a
// buffer to pass to the radio.
//
// RxState:
// The RxState struct is analogous to the TxState struct, in that it maintains
// state specific to reassembling an IPv6 packet. Unlike the TxState struct
// however, the Sixlowpan object manages multiple RxState structs. These
// RxStates serve as a pool of objects, and when a fragment arrives, the
// Sixlowpan object either dispatches it to an in-progress packet reassembly
// managed by a busy RxState struct, or initializes a free RxState struct
// to start reassembling the rest of the fragments. Similar to TxState,
// RxState objects should only be visible to the Sixlowpan object, aside
// from one caveat - the initialization of RxStates must occur statically
// outside the Sixlowpan struct (this may change in the future).
//
// The RxState struct maintains the in-progress packet buffer, a bitmap
// indicating which 8-byte chunks have not yet been received, the source/dest
// mac address pair, datagram size and tag, and a start time (to lazily
// expire timed-out reassembly processes).
//
// SixlowpanRxClient:
// The SixlowpanRxClient trait has a single function, `receive`. Upper layers
// that implement this trait can set themselves as the client for the Sixlowpan
// struct, and will receive a callback once an IPv6 packet has been fully
// reassembled. Note that the Sixlowpan struct allows for the client to be
// set or changed at runtime, but the current assumption is that a single,
// static client sits above the 6LoWPAN receive layer.
//
//
// Design Decisions
// ----------------
// Throughout designing this layer, there were a number of critical design
// decisions made. Several of the most prominent are listed below, with a
// short rationale as to why they were necessary or the most optimal solution.
//
// Multiple RxStates:
// This design decision is one of the more complicated and contentious ones.
// Due to the wording of the 6LoWPAN specification and the data associated
// with 6LoWPAN fragments, it is entirely reasonable to expect that even
// an edge node (a node not doing routing) might receive 6LoWPAN fragments
// for different IP packets interleaved. In particular, a 6LoWPAN fragment
// header contains a datagram tag, which is different for each IPv6 packet
// fragmented even from the same layer 2 source/destination pairs. Thus,
// a single node could send multiple, distinct, fragmented IPv6 packets
// simultaneously (or at least, a node is not prohibited from doing so). In
// addition, the reassembly timeout for 6LoWPAN fragments is on the order of
// seconds, and with a single RxState, a single lost fragment could
// substantially hamper or delay the ability of a client to receive additional
// packets. As a result of these two issues, the ability to add several
// RxStates to the 6LoWPAN layer was provided. Unfortunately, this
// increased the complexity of this layer substantially, and further,
// necessitated additional initialization complexity by the upper layer.
//
// Single TxState:
// Although both the RxState and TxState structs are treated similarly by
// the Sixlowpan layer, many aspects of their control flow differ
// significantly. The final design decision was to have a single upper layer
// that serialized (or virtualized) both the reception and transmission of
// IPv6 packets. As a result, only a single outstanding transmission made
// sense, and thus the layer was designed to have a serial transmit path.
// Note that this differs greatly from the RxState model, but since we
// cannot serialize reception in the same way, it did not make sense to treat
// both RxState and TxState structs identically.
//
// TODOs and Known Issues
// ----------------------------------
//
// TODOs:
//
// * Implement and expose a ConfigClient interface?
//
// * Implement the disassociation event, integrate with lower layer
//
// * Move network constants/tuning parameters to a separate file
//
// Issues:
//
// * On imix, the receiver sometimes fails to receive a fragment. This
// occurs below the Mac layer, and prevents the packet from being fully
// reassembled.
//
use crate::ieee802154::device::{MacDevice, RxClient};
use crate::ieee802154::framer::Frame;
use crate::net::frag_utils::Bitmap;
use crate::net::ieee802154::{Header, KeyId, MacAddress, PanID, SecurityLevel};
use crate::net::ipv6::IP6Packet;
use crate::net::sixlowpan::sixlowpan_compression;
use crate::net::sixlowpan::sixlowpan_compression::{is_lowpan, ContextStore};
use crate::net::util::{network_slice_to_u16, u16_to_network_slice};
use core::cell::Cell;
use core::cmp::min;
use kernel::collections::list::{List, ListLink, ListNode};
use kernel::hil::radio;
use kernel::hil::time;
use kernel::hil::time::{Frequency, Ticks};
use kernel::utilities::cells::{MapCell, TakeCell};
use kernel::ErrorCode;
// Reassembly timeout in seconds
const FRAG_TIMEOUT: u32 = 60;
/// Objects that implement this trait can set themselves to be the client
/// for the [Sixlowpan](struct.Sixlowpan.html) struct, and will then receive
/// a callback once an IPv6 packet has been fully reassembled.
pub trait SixlowpanRxClient {
fn receive(&self, buf: &[u8], len: usize, result: Result<(), ErrorCode>);
}
pub mod lowpan_frag {
pub const FRAGN_HDR: u8 = 0b11100000;
pub const FRAG1_HDR: u8 = 0b11000000;
pub const FRAG1_HDR_SIZE: usize = 4;
pub const FRAGN_HDR_SIZE: usize = 5;
}
fn set_frag_hdr(
dgram_size: u16,
dgram_tag: u16,
dgram_offset: usize,
hdr: &mut [u8],
is_frag1: bool,
) {
let mask = if is_frag1 {
lowpan_frag::FRAG1_HDR
} else {
lowpan_frag::FRAGN_HDR
};
u16_to_network_slice(dgram_size, &mut hdr[0..2]);
hdr[0] = mask | (hdr[0] & !mask);
u16_to_network_slice(dgram_tag, &mut hdr[2..4]);
if !is_frag1 {
hdr[4] = (dgram_offset / 8) as u8;
}
}
fn get_frag_hdr(hdr: &[u8]) -> (bool, u16, u16, usize) {
let is_frag1 = match hdr[0] & lowpan_frag::FRAGN_HDR {
lowpan_frag::FRAG1_HDR => true,
_ => false,
};
// Zero out upper bits
let dgram_size = network_slice_to_u16(&hdr[0..2]) & !(0xf << 12);
let dgram_tag = network_slice_to_u16(&hdr[2..4]);
let dgram_offset = if is_frag1 { 0 } else { hdr[4] };
(is_frag1, dgram_size, dgram_tag, (dgram_offset as usize) * 8)
}
fn is_fragment(packet: &[u8]) -> bool {
let mask = packet[0] & lowpan_frag::FRAGN_HDR;
(mask == lowpan_frag::FRAGN_HDR) || (mask == lowpan_frag::FRAG1_HDR)
}
pub trait SixlowpanState<'a> {
fn next_dgram_tag(&self) -> u16;
fn get_ctx_store(&self) -> &dyn ContextStore;
fn add_rx_state(&self, rx_state: &'a RxState<'a>);
fn set_rx_client(&'a self, client: &'a dyn SixlowpanRxClient);
}
/// Tracks the compression state for a single IPv6 packet.
///
/// When an upper layer is interested in sending a packet using Sixlowpan,
/// they must first call `TxState.init`, which initializes the compression
/// state for a new packet. The upper layer then repeatedly calls
/// `TxState.next_fragment` until there are no more frames to compress.
/// Note that the upper layer is responsible for sending the compressed
/// frames; the `TxState` struct simply produces compressed MAC frames.
pub struct TxState<'a> {
/// State for the current transmission
pub dst_pan: Cell<PanID>, // Pub to allow for setting to broadcast PAN and back
src_pan: Cell<PanID>,
src_mac_addr: Cell<MacAddress>,
dst_mac_addr: Cell<MacAddress>,
security: Cell<Option<(SecurityLevel, KeyId)>>,
dgram_tag: Cell<u16>, // Used to identify particular fragment streams
dgram_size: Cell<u16>,
dgram_offset: Cell<usize>,
busy: Cell<bool>,
// We need a reference to sixlowpan to compute and increment
// the global dgram_tag value
sixlowpan: &'a dyn SixlowpanState<'a>,
}
impl<'a> TxState<'a> {
/// Creates a new `TxState`
///
/// # Arguments
///
/// `sixlowpan` - A reference to a `SixlowpanState` object, which contains
/// global state for the entire Sixlowpan layer.
pub fn new(sixlowpan: &'a dyn SixlowpanState<'a>) -> TxState<'a> {
TxState {
// Externally settable fields
src_pan: Cell::new(0),
dst_pan: Cell::new(0),
src_mac_addr: Cell::new(MacAddress::Short(0)),
dst_mac_addr: Cell::new(MacAddress::Short(0)),
security: Cell::new(None),
// Internal fields
dgram_tag: Cell::new(0),
dgram_size: Cell::new(0),
dgram_offset: Cell::new(0),
busy: Cell::new(false),
sixlowpan,
}
}
/// Initializes `TxState` for a new packet
///
/// # Arguments
///
/// `src_mac_addr` - The MAC address the frame will be sent from
/// `dst_mac_addr` - The MAC address the frame will be sent to
/// `radio_pan` - The PAN ID held by the radio underlying this stack
/// `security` - Any security options (necessary since the size of the
/// produced MAC frame is dependent on the security options)
///
/// # Return Value
///
/// This function returns a `Result<(), ErrorCode>`, which indicates success or
/// failure. Note that if `init` has already been called and we are
/// currently sending a packet, this function will return
/// `Err(ErrorCode::BUSY)`
pub fn init(
&self,
src_mac_addr: MacAddress,
dst_mac_addr: MacAddress,
radio_pan: u16,
security: Option<(SecurityLevel, KeyId)>,
) -> Result<(), ErrorCode> {
if self.busy.get() {
Err(ErrorCode::BUSY)
} else {
self.src_mac_addr.set(src_mac_addr);
self.dst_mac_addr.set(dst_mac_addr);
self.security.set(security);
self.busy.set(false);
self.src_pan.set(radio_pan);
self.dst_pan.set(radio_pan);
Ok(())
}
}
/// Gets the next 6LoWPAN Fragment (as a MAC frame) to be sent. Note that
/// this layer **does not** send the frame, and assumes that `init` has
/// already been called.
///
/// # Arguments
///
/// `ip6_packet` - A reference to the IPv6 packet to be compressed
/// `frag_buf` - The buffer to write the MAC frame to
/// `radio` - A reference to a MacDevice, which is used to prepare the
/// MAC frame
///
/// # Return Value
///
/// This function returns a `Result` type:
/// `Ok(bool, frame)` - If `Ok`, then `bool` indicates whether the
/// transmission is complete, and `Frame` is the filled out next MAC frame
/// `Err(Result<(), ErrorCode>, &'static mut [u8])` - If `Err`, then `Result<(), ErrorCode>`
/// is the reason for the error, and the return buffer is the (non-consumed)
/// `frag_buf` passed in as an argument
pub fn next_fragment<'b>(
&self,
ip6_packet: &'b IP6Packet<'b>,
frag_buf: &'static mut [u8],
radio: &dyn MacDevice,
) -> Result<(bool, Frame), (Result<(), ErrorCode>, &'static mut [u8])> {
// This consumes frag_buf
let frame = radio
.prepare_data_frame(
frag_buf,
self.dst_pan.get(),
self.dst_mac_addr.get(),
self.src_pan.get(),
self.src_mac_addr.get(),
self.security.get(),
)
.map_err(|frame| (Err(ErrorCode::FAIL), frame))?;
// If this is the first fragment
if !self.busy.get() {
let frame = self.start_transmit(ip6_packet, frame, self.sixlowpan.get_ctx_store())?;
Ok((false, frame))
} else if self.is_transmit_done() {
self.end_transmit();
Ok((true, frame))
} else {
// Want the total datagram size we are sending to be less than
// the length of the packet - otherwise, we risk reading off the
// end of the array
if self.dgram_size.get() != ip6_packet.get_total_len() {
return Err((Err(ErrorCode::NOMEM), frame.into_buf()));
}
let frame = self.prepare_next_fragment(ip6_packet, frame)?;
Ok((false, frame))
}
}
fn is_transmit_done(&self) -> bool {
self.dgram_size.get() as usize <= self.dgram_offset.get()
}
// Frag_buf needs to be >= 802.15.4 MTU
// The radio takes frag_buf, consumes it, returns Frame or Error
fn start_transmit<'b>(
&self,
ip6_packet: &'b IP6Packet<'b>,
frame: Frame,
ctx_store: &dyn ContextStore,
) -> Result<Frame, (Result<(), ErrorCode>, &'static mut [u8])> {
self.busy.set(true);
self.dgram_size.set(ip6_packet.get_total_len());
self.dgram_tag.set(self.sixlowpan.next_dgram_tag());
self.prepare_first_fragment(ip6_packet, frame, ctx_store)
}
fn prepare_first_fragment<'b>(
&self,
ip6_packet: &'b IP6Packet<'b>,
mut frame: Frame,
ctx_store: &dyn ContextStore,
) -> Result<Frame, (Result<(), ErrorCode>, &'static mut [u8])> {
// Here, we assume that the compressed headers fit in the first MTU
// fragment. This is consistent with RFC 6282.
let mut lowpan_packet = [0_u8; radio::MAX_FRAME_SIZE];
let (consumed, written) = {
match sixlowpan_compression::compress(
ctx_store,
ip6_packet,
self.src_mac_addr.get(),
self.dst_mac_addr.get(),
&mut lowpan_packet,
) {
Err(()) => return Err((Err(ErrorCode::FAIL), frame.into_buf())),
Ok(result) => result,
}
};
let remaining_payload = ip6_packet.get_total_len() as usize - consumed;
let lowpan_len = written + remaining_payload;
// TODO: This -2 is added to account for the FCS; this should be changed
// in the MAC code
let mut remaining_capacity = frame.remaining_data_capacity() - 2;
// Need to fragment
if lowpan_len > remaining_capacity {
remaining_capacity -= self.write_frag_hdr(&mut frame, true);
}
// Write the 6lowpan header
if written <= remaining_capacity {
// TODO: Check success
let _ = frame.append_payload(&lowpan_packet[0..written]);
remaining_capacity -= written;
} else {
return Err((Err(ErrorCode::SIZE), frame.into_buf()));
}
// Write the remainder of the payload, rounding down to a multiple
// of 8 if the entire payload won't fit
let payload_len = if remaining_payload > remaining_capacity {
remaining_capacity & !0b111
} else {
remaining_payload
};
// TODO: Check success
let (payload_len, consumed) =
self.write_additional_headers(ip6_packet, &mut frame, consumed, payload_len);
let _ = frame.append_payload(&ip6_packet.get_payload()[0..payload_len]);
self.dgram_offset.set(consumed + payload_len);
Ok(frame)
}
fn prepare_next_fragment<'b>(
&self,
ip6_packet: &'b IP6Packet<'b>,
mut frame: Frame,
) -> Result<Frame, (Result<(), ErrorCode>, &'static mut [u8])> {
let dgram_offset = self.dgram_offset.get();
let mut remaining_capacity = frame.remaining_data_capacity();
remaining_capacity -= self.write_frag_hdr(&mut frame, false);
// This rounds payload_len down to the nearest multiple of 8 if it
// is not the last fragment (per RFC 4944)
let remaining_payload = (self.dgram_size.get() as usize) - dgram_offset;
let payload_len = if remaining_payload > remaining_capacity {
remaining_capacity & !0b111
} else {
remaining_payload
};
let (payload_len, dgram_offset) =
self.write_additional_headers(ip6_packet, &mut frame, dgram_offset, payload_len);
if payload_len > 0 {
let payload_offset = dgram_offset - ip6_packet.get_total_hdr_size();
let _ = frame.append_payload(
&ip6_packet.get_payload()[payload_offset..payload_offset + payload_len],
);
}
// Update the offset to be used for the next fragment
self.dgram_offset.set(dgram_offset + payload_len);
Ok(frame)
}
// NOTE: This function will not work for headers that span past the first
// frame.
fn write_additional_headers<'b>(
&self,
ip6_packet: &'b IP6Packet<'b>,
frame: &mut Frame,
dgram_offset: usize,
payload_len: usize,
) -> (usize, usize) {
let total_hdr_len = ip6_packet.get_total_hdr_size();
let mut payload_len = payload_len;
let mut dgram_offset = dgram_offset;
if total_hdr_len > dgram_offset {
let headers_to_write = min(payload_len, total_hdr_len - dgram_offset);
// TODO: Note that in order to serialize the headers, we need to
// statically allocate room on the stack. However, we do not know
// how many additional headers we have until runtime. This
// functionality should be fixed in the future.
let mut headers = [0_u8; 60];
ip6_packet.encode(&mut headers);
let _ = frame.append_payload(&headers[dgram_offset..dgram_offset + headers_to_write]);
payload_len -= headers_to_write;
dgram_offset += headers_to_write;
}
(payload_len, dgram_offset)
}
fn write_frag_hdr(&self, frame: &mut Frame, first_frag: bool) -> usize {
if first_frag {
let mut frag_header = [0_u8; lowpan_frag::FRAG1_HDR_SIZE];
set_frag_hdr(
self.dgram_size.get(),
self.dgram_tag.get(),
/*offset = */
0,
&mut frag_header,
true,
);
// TODO: Check success
let _ = frame.append_payload(&frag_header);
lowpan_frag::FRAG1_HDR_SIZE
} else {
let mut frag_header = [0_u8; lowpan_frag::FRAGN_HDR_SIZE];
set_frag_hdr(
self.dgram_size.get(),
self.dgram_tag.get(),
self.dgram_offset.get(),
&mut frag_header,
first_frag,
);
// TODO: Check success
let _ = frame.append_payload(&frag_header);
lowpan_frag::FRAGN_HDR_SIZE
}
}
fn end_transmit(&self) {
self.busy.set(false);
}
}
/// Tracks the decompression and defragmentation of an IPv6 packet
///
/// A list of `RxState`s is maintained by [Sixlowpan](struct.Sixlowpan.html) to
/// keep track of ongoing packet reassemblies. The number of `RxState`s is the
/// number of packets that can be reassembled at the same time. Generally,
/// two `RxState`s are sufficient for normal-case operation.
pub struct RxState<'a> {
packet: TakeCell<'static, [u8]>,
bitmap: MapCell<Bitmap>,
dst_mac_addr: Cell<MacAddress>,
src_mac_addr: Cell<MacAddress>,
dgram_tag: Cell<u16>,
dgram_size: Cell<u16>,
// Marks if this instance is being used for a packet reassembly or if it is
// free to use for a new packet.
busy: Cell<bool>,
// The time when packet reassembly started for the current packet.
start_time: Cell<u32>,
next: ListLink<'a, RxState<'a>>,
}
impl<'a> ListNode<'a, RxState<'a>> for RxState<'a> {
fn next(&'a self) -> &'a ListLink<RxState<'a>> {
&self.next
}
}
impl<'a> RxState<'a> {
/// Creates a new `RxState`
///
/// # Arguments
///
/// `packet` - A buffer for reassembling an IPv6 packet. Currently, we
/// assume this to be 1280 bytes long (the minimum IPv6 MTU size).
pub fn new(packet: &'static mut [u8]) -> RxState<'a> {
RxState {
packet: TakeCell::new(packet),
bitmap: MapCell::new(Bitmap::new()),
dst_mac_addr: Cell::new(MacAddress::Short(0)),
src_mac_addr: Cell::new(MacAddress::Short(0)),
dgram_tag: Cell::new(0),
dgram_size: Cell::new(0),
busy: Cell::new(false),
start_time: Cell::new(0),
next: ListLink::empty(),
}
}
fn is_my_fragment(
&self,
src_mac_addr: MacAddress,
dst_mac_addr: MacAddress,
dgram_size: u16,
dgram_tag: u16,
) -> bool {
self.busy.get()
&& (self.dgram_tag.get() == dgram_tag)
&& (self.dgram_size.get() == dgram_size)
&& (self.src_mac_addr.get() == src_mac_addr)
&& (self.dst_mac_addr.get() == dst_mac_addr)
}
// Checks if a given RxState is free or expired (and thus, can be freed).
// This function implements the reassembly timeout for 6LoWPAN lazily.
fn is_busy(&self, frequency: u32, current_time: u32) -> bool {
let expired = current_time >= (self.start_time.get() + FRAG_TIMEOUT * frequency);
if expired {
self.end_receive(None, Err(ErrorCode::FAIL));
}
self.busy.get()
}
fn start_receive(
&self,
src_mac_addr: MacAddress,
dst_mac_addr: MacAddress,
dgram_size: u16,
dgram_tag: u16,
current_tics: u32,
) {
self.dst_mac_addr.set(dst_mac_addr);
self.src_mac_addr.set(src_mac_addr);
self.dgram_tag.set(dgram_tag);
self.dgram_size.set(dgram_size);
self.busy.set(true);
self.bitmap.map(|bitmap| bitmap.clear());
self.start_time.set(current_tics);
}
// This function assumes that the payload is a slice starting from the
// actual payload (no 802.15.4 headers, no fragmentation headers), and
// returns true if the packet is completely reassembled.
fn receive_next_frame(
&self,
payload: &[u8],
payload_len: usize,
dgram_size: u16,
dgram_offset: usize,
ctx_store: &dyn ContextStore,
) -> Result<bool, Result<(), ErrorCode>> {
let packet = self.packet.take().ok_or(Err(ErrorCode::NOMEM))?;
let uncompressed_len = if dgram_offset == 0 {
let (consumed, written) = sixlowpan_compression::decompress(
ctx_store,
&payload[0..payload_len],
self.src_mac_addr.get(),
self.dst_mac_addr.get(),
packet,
dgram_size,
true,
)
.map_err(|()| Err(ErrorCode::FAIL))?;
let remaining = payload_len - consumed;
packet[written..written + remaining]
.copy_from_slice(&payload[consumed..consumed + remaining]);
written + remaining
} else {
packet[dgram_offset..dgram_offset + payload_len]
.copy_from_slice(&payload[0..payload_len]);
payload_len
};
self.packet.replace(packet);
if !self.bitmap.map_or(false, |bitmap| {
bitmap.set_bits(dgram_offset / 8, (dgram_offset + uncompressed_len) / 8)
}) {
// If this fails, we received an overlapping fragment. We can simply
// drop the packet in this case.
Err(Err(ErrorCode::FAIL))
} else {
self.bitmap
.map(|bitmap| bitmap.is_complete((dgram_size as usize) / 8))
.ok_or(Err(ErrorCode::FAIL))
}
}
fn end_receive(
&self,
client: Option<&'a dyn SixlowpanRxClient>,
result: Result<(), ErrorCode>,
) {
self.busy.set(false);
self.bitmap.map(|bitmap| bitmap.clear());
self.start_time.set(0);
client.map(move |client| {
// Since packet is borrowed from the upper layer, failing to return it
// in the callback represents a significant error that should never
// occur - all other calls to `packet.take()` replace the packet,
// and thus the packet should always be here.
self.packet
.map(|packet| {
client.receive(packet, self.dgram_size.get() as usize, result);
})
.unwrap(); // Unwrap fail = Error: `packet` is None in call to end_receive.
});
}
}
/// Sends a receives IPv6 packets via 6loWPAN compression and fragmentation.
///
/// # Initialization
///
/// The `new` method creates an instance of `Sixlowpan` that can send packets.
/// To receive packets, `Sixlowpan` needs one or more
/// [RxState](struct.RxState.html)s which can be added with `add_rx_state`. More
/// [RxState](struct.RxState.html)s allow the `Sixlowpan` to receive more
/// packets concurrently.
///
/// Finally, `set_client` controls the client that will receive transmission
/// completion and reception callbacks.
pub struct Sixlowpan<'a, A: time::Alarm<'a>, C: ContextStore> {
pub ctx_store: C,
clock: &'a A,
tx_dgram_tag: Cell<u16>,
rx_client: Cell<Option<&'a dyn SixlowpanRxClient>>,
// Receive state
rx_states: List<'a, RxState<'a>>,
}
// This function is called after receiving a frame
impl<'a, A: time::Alarm<'a>, C: ContextStore> RxClient for Sixlowpan<'a, A, C> {
fn receive<'b>(
&self,
buf: &'b [u8],
header: Header<'b>,
_lqi: u8,
data_offset: usize,
data_len: usize,
) {
// We return if retcode is not valid, as it does not make sense to issue
// a callback for an invalid frame reception
// TODO: Handle the case where the addresses are None/elided - they
// should not default to the zero address
let src_mac_addr = header.src_addr.unwrap_or(MacAddress::Short(0));
let dst_mac_addr = header.dst_addr.unwrap_or(MacAddress::Short(0));
let (rx_state, returncode) = self.receive_frame(
&buf[data_offset..data_offset + data_len],
data_len,
src_mac_addr,
dst_mac_addr,
);
// Reception completed if rx_state is not None. Note that this can
// also occur for some fail states (e.g. dropping an invalid packet)
rx_state.map(|state| state.end_receive(self.rx_client.get(), returncode));
}
}
impl<'a, A: time::Alarm<'a>, C: ContextStore> SixlowpanState<'a> for Sixlowpan<'a, A, C> {
fn next_dgram_tag(&self) -> u16 {
// Increment dgram_tag
let dgram_tag = if (self.tx_dgram_tag.get() + 1) == 0 {
1
} else {
self.tx_dgram_tag.get() + 1
};
self.tx_dgram_tag.set(dgram_tag);
dgram_tag
}
fn get_ctx_store(&self) -> &dyn ContextStore {
&self.ctx_store
}
/// Adds an additional `RxState` for reassembling IPv6 packets
///
/// Each [RxState](struct.RxState.html) struct allows an additional IPv6
/// packet to be reassembled concurrently.
fn add_rx_state(&self, rx_state: &'a RxState<'a>) {
self.rx_states.push_head(rx_state);
}
/// Sets the [SixlowpanClient](trait.SixlowpanClient.html) that will receive
/// transmission completion and new packet reception callbacks.
fn set_rx_client(&'a self, client: &'a dyn SixlowpanRxClient) {
self.rx_client.set(Some(client));
}
}
impl<'a, A: time::Alarm<'a>, C: ContextStore> Sixlowpan<'a, A, C> {
/// Creates a new `Sixlowpan`
///
/// # Arguments
///
/// * `ctx_store` - Stores IPv6 address nextwork context mappings
///
/// * `tx_buf` - A buffer used for storing individual fragments of a packet
/// in transmission. This buffer must be at least the length of an 802.15.4
/// frame.
///
/// * `clock` - A implementation of `Alarm` used for tracking the timing of
/// frame arrival. The clock should be continue running during sleep and
/// have an accuracy of at least 60 seconds.
pub fn new(ctx_store: C, clock: &'a A) -> Sixlowpan<'a, A, C> {
Sixlowpan {
ctx_store,
clock,
tx_dgram_tag: Cell::new(0),
rx_client: Cell::new(None),
rx_states: List::new(),
}
}
fn receive_frame(
&self,
packet: &[u8],
packet_len: usize,
src_mac_addr: MacAddress,
dst_mac_addr: MacAddress,
) -> (Option<&RxState<'a>>, Result<(), ErrorCode>) {
if is_fragment(packet) {
let (is_frag1, dgram_size, dgram_tag, dgram_offset) = get_frag_hdr(&packet[0..5]);
let offset_to_payload = if is_frag1 {
lowpan_frag::FRAG1_HDR_SIZE
} else {
lowpan_frag::FRAGN_HDR_SIZE
};
self.receive_fragment(
&packet[offset_to_payload..],
packet_len - offset_to_payload,
src_mac_addr,
dst_mac_addr,
dgram_size,
dgram_tag,
dgram_offset,
)
} else {
self.receive_single_packet(packet, packet_len, src_mac_addr, dst_mac_addr)
}
}
fn receive_single_packet(
&self,
payload: &[u8],
payload_len: usize,
src_mac_addr: MacAddress,
dst_mac_addr: MacAddress,
) -> (Option<&RxState<'a>>, Result<(), ErrorCode>) {
let rx_state = self
.rx_states
.iter()
.find(|state| !state.is_busy(self.clock.now().into_u32(), A::Frequency::frequency()));
rx_state.map_or((None, Err(ErrorCode::NOMEM)), |state| {
state.start_receive(
src_mac_addr,
dst_mac_addr,
payload_len as u16,
0,
self.clock.now().into_u32(),
);
// The packet buffer should *always* be there; in particular,
// since this state is not busy, it must have the packet buffer.
// Otherwise, we are in an inconsistent state and can fail.
let packet = state.packet.take().unwrap();
// Filter non 6LoWPAN packets and return
if !is_lowpan(payload) {
return (None, Ok(()));
}
let decompressed = sixlowpan_compression::decompress(
&self.ctx_store,
&payload[0..payload_len],
src_mac_addr,
dst_mac_addr,
packet,
0,
false,
);
match decompressed {
Ok((consumed, written)) => {
let remaining = payload_len - consumed;
packet[written..written + remaining]
.copy_from_slice(&payload[consumed..consumed + remaining]);
// Want dgram_size to contain decompressed size of packet
state.dgram_size.set((written + remaining) as u16);
}
Err(()) => {
return (None, Err(ErrorCode::FAIL));
}
}
state.packet.replace(packet);
(Some(state), Ok(()))
})
}
// This function returns an Err if an error occurred, returns Ok(Some(RxState))
// if the packet has been fully reassembled, or returns Ok(None) if there
// are still pending fragments
fn receive_fragment(
&self,
frag_payload: &[u8],
payload_len: usize,
src_mac_addr: MacAddress,
dst_mac_addr: MacAddress,
dgram_size: u16,
dgram_tag: u16,
dgram_offset: usize,
) -> (Option<&RxState<'a>>, Result<(), ErrorCode>) {
// First try to find an rx_state in the middle of assembly
let mut rx_state = self
.rx_states
.iter()
.find(|state| state.is_my_fragment(src_mac_addr, dst_mac_addr, dgram_size, dgram_tag));
// Else find a free state
if rx_state.is_none() {
rx_state = self.rx_states.iter().find(|state| {
!state.is_busy(self.clock.now().into_u32(), A::Frequency::frequency())
});
// Initialize new state
rx_state.map(|state| {
state.start_receive(
src_mac_addr,
dst_mac_addr,
dgram_size,
dgram_tag,
self.clock.now().into_u32(),
)
});
if rx_state.is_none() {
return (None, Err(ErrorCode::NOMEM));
}
}
rx_state.map_or((None, Err(ErrorCode::NOMEM)), |state| {
// Returns true if the full packet is reassembled
let res = state.receive_next_frame(
frag_payload,
payload_len,
dgram_size,
dgram_offset,
&self.ctx_store,
);
match res {
// Some error occurred
Err(_) => (Some(state), Err(ErrorCode::FAIL)),
Ok(complete) => {
if complete {
// Packet fully reassembled
(Some(state), Ok(()))
} else {
// Packet not fully reassembled
(None, Ok(()))
}
}
}
})
}
#[allow(dead_code)]
// TODO: This code is currently unimplemented
// This function is called when a disassociation event occurs, as we need
// to expire all pending state.
fn discard_all_state(&self) {
for rx_state in self.rx_states.iter() {
rx_state.end_receive(None, Err(ErrorCode::FAIL));
}
unimplemented!();
// TODO: Need to get buffer back from Mac layer on disassociation
}
}