1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Virtual IEEE 802.15.4 MAC device
//!
//! `MuxMac` provides multiplexed access to an 802.15.4 MAC device. This enables
//! a single underlying 802.15.4 radio to be shared transparently by multiple
//! users. For example, the kernel might want to send raw 802.15.4 frames and
//! subsequently 6LoWPAN-encoded and fragmented IP packets. This capsule allows
//! that to happen by providing a mechanism for sequencing transmission attempts,
//! Every radio frame received is provided to all listening clients so that each
//! client can perform its own frame filtering logic.
//!
//! Usage
//! -----
//!
//! ```rust,ignore
//! # use kernel::static_init;
//!
//! // Create the mux.
//! let mux_mac = static_init!(
//! capsules::ieee802154::virtual_mac::MuxMac<'static>,
//! capsules::ieee802154::virtual_mac::MuxMac::new(&'static mac_device));
//! mac_device.set_transmit_client(mux_mac);
//! mac_device.set_receive_client(mux_mac);
//!
//! // Everything that uses the virtualized MAC device must create one of these.
//! let virtual_mac = static_init!(
//! capsules::ieee802154::virtual_mac::MacUser<'static>,
//! capsules::ieee802154::virtual_mac::MacUser::new(mux_mac));
//! mux_mac.add_user(virtual_mac);
//! ```
use crate::ieee802154::{device, framer};
use crate::net::ieee802154::{Header, KeyId, MacAddress, PanID, SecurityLevel};
use kernel::collections::list::{List, ListLink, ListNode};
use kernel::utilities::cells::{MapCell, OptionalCell};
use kernel::ErrorCode;
/// IEE 802.15.4 MAC device muxer that keeps a list of MAC users and sequences
/// any pending transmission requests. Any received frames from the underlying
/// MAC device are sent to all users.
pub struct MuxMac<'a, M: device::MacDevice<'a>> {
mac: &'a M,
users: List<'a, MacUser<'a, M>>,
inflight: OptionalCell<&'a MacUser<'a, M>>,
}
impl<'a, M: device::MacDevice<'a>> device::TxClient for MuxMac<'a, M> {
fn send_done(&self, spi_buf: &'static mut [u8], acked: bool, result: Result<(), ErrorCode>) {
self.inflight.take().map(move |user| {
user.send_done(spi_buf, acked, result);
});
self.do_next_op_async();
}
}
impl<'a, M: device::MacDevice<'a>> device::RxClient for MuxMac<'a, M> {
fn receive<'b>(
&self,
buf: &'b [u8],
header: Header<'b>,
lqi: u8,
data_offset: usize,
data_len: usize,
) {
for user in self.users.iter() {
user.receive(buf, header, lqi, data_offset, data_len);
}
}
}
impl<'a, M: device::MacDevice<'a>> MuxMac<'a, M> {
pub const fn new(mac: &'a M) -> MuxMac<'a, M> {
MuxMac {
mac,
users: List::new(),
inflight: OptionalCell::empty(),
}
}
/// Registers a MAC user with this MAC mux device. Each MAC user should only
/// be registered once.
pub fn add_user(&self, user: &'a MacUser<'a, M>) {
self.users.push_head(user);
}
/// Gets the next `MacUser` and operation to perform if an operation is not
/// already underway.
fn get_next_op_if_idle(&self) -> Option<(&'a MacUser<'a, M>, Op)> {
if self.inflight.is_some() {
return None;
}
let mnode = self.users.iter().find(|node| {
node.operation.take().map_or(false, |op| {
let pending = op != Op::Idle;
node.operation.replace(op);
pending
})
});
mnode.and_then(|node| {
node.operation.take().map(|op| {
node.operation.replace(Op::Idle);
(node, op)
})
})
}
/// Performs a non-idle operation on a `MacUser` asynchronously: that is, if the
/// transmission operation results in immediate failure, then return the
/// buffer to the `MacUser` via its transmit client.
fn perform_op_async(&self, node: &'a MacUser<'a, M>, op: Op) {
if let Op::Transmit(frame) = op {
match self.mac.transmit(frame) {
// If Err, the transmission failed,
// otherwise it succeeded.
Ok(()) => {
self.inflight.set(node);
}
Err((ecode, buf)) => {
node.send_done(buf, false, Err(ecode));
}
}
}
}
/// Performs a non-idle operation on a `MacUser` synchronously, returning
/// the error code and the buffer immediately.
fn perform_op_sync(
&self,
node: &'a MacUser<'a, M>,
op: Op,
) -> Option<Result<(), (ErrorCode, &'static mut [u8])>> {
if let Op::Transmit(frame) = op {
let result = self.mac.transmit(frame);
if result.is_ok() {
self.inflight.set(node);
}
Some(result)
} else {
None
}
}
/// Begins the next outstanding transmission if there is no ongoing
/// operation and there is a user waiting to transmit a frame.
/// Since this is being called asynchronously, return any buffers to the active
/// `tx_client` via the `send_done` callback in the event of failure.
fn do_next_op_async(&self) {
self.get_next_op_if_idle()
.map(|(node, op)| self.perform_op_async(node, op));
}
/// Begins the next outstanding transmission if there is no ongoing
/// operation and there is a user waiting to transmit a frame. Since this is
/// being called synchronously, there is a need to identify the MacUser that
/// just queued its transmission request. This can only be done by comparing
/// the raw pointer references of the two users, since there is no
/// type-level way to guarantee that the enqueued user is actually in this Mux device's
/// `users` list. It's safe because the raw pointer references are never
/// dereferenced.
///
/// If the newly-enqueued transmission is immediately executed by this mux
/// device but fails immediately, return the buffer synchronously.
fn do_next_op_sync(
&self,
new_node: &MacUser<'a, M>,
) -> Option<Result<(), (ErrorCode, &'static mut [u8])>> {
self.get_next_op_if_idle().and_then(|(node, op)| {
if core::ptr::eq(node, new_node) {
// The new node's operation is the one being scheduled, so the
// operation is synchronous
self.perform_op_sync(node, op)
} else {
// The operation being scheduled is not the new node, so the
// operation is asynchronous with respect to the new node.
self.perform_op_async(node, op);
None
}
})
}
}
#[derive(Eq, PartialEq, Debug)]
enum Op {
Idle,
Transmit(framer::Frame),
}
/// Keep state for each Mac user. All users of the virtualized MAC interface
/// need to create one of these and register it with the MAC device muxer
/// `MuxMac` by calling `MuxMac#add_user`. Then, each `MacUser` behaves exactly
/// like an independent MAC device, except MAC device state is shared between
/// all MacUsers because there is only one MAC device. For example, the MAC
/// device address is shared, so calling `set_address` on one `MacUser` sets the
/// MAC address for all `MacUser`s.
pub struct MacUser<'a, M: device::MacDevice<'a>> {
mux: &'a MuxMac<'a, M>,
operation: MapCell<Op>,
next: ListLink<'a, MacUser<'a, M>>,
tx_client: OptionalCell<&'a dyn device::TxClient>,
rx_client: OptionalCell<&'a dyn device::RxClient>,
}
impl<'a, M: device::MacDevice<'a>> MacUser<'a, M> {
pub const fn new(mux: &'a MuxMac<'a, M>) -> Self {
Self {
mux,
operation: MapCell::new(Op::Idle),
next: ListLink::empty(),
tx_client: OptionalCell::empty(),
rx_client: OptionalCell::empty(),
}
}
}
impl<'a, M: device::MacDevice<'a>> MacUser<'a, M> {
fn send_done(&self, spi_buf: &'static mut [u8], acked: bool, result: Result<(), ErrorCode>) {
self.tx_client
.get()
.map(move |client| client.send_done(spi_buf, acked, result));
}
fn receive<'b>(
&self,
buf: &'b [u8],
header: Header<'b>,
lqi: u8,
data_offset: usize,
data_len: usize,
) {
self.rx_client
.get()
.map(move |client| client.receive(buf, header, lqi, data_offset, data_len));
}
}
impl<'a, M: device::MacDevice<'a>> ListNode<'a, MacUser<'a, M>> for MacUser<'a, M> {
fn next(&'a self) -> &'a ListLink<'a, MacUser<'a, M>> {
&self.next
}
}
impl<'a, M: device::MacDevice<'a>> device::MacDevice<'a> for MacUser<'a, M> {
fn set_transmit_client(&self, client: &'a dyn device::TxClient) {
self.tx_client.set(client);
}
fn set_receive_client(&self, client: &'a dyn device::RxClient) {
self.rx_client.set(client);
}
fn get_address(&self) -> u16 {
self.mux.mac.get_address()
}
fn get_address_long(&self) -> [u8; 8] {
self.mux.mac.get_address_long()
}
fn get_pan(&self) -> u16 {
self.mux.mac.get_pan()
}
fn set_address(&self, addr: u16) {
self.mux.mac.set_address(addr)
}
fn set_address_long(&self, addr: [u8; 8]) {
self.mux.mac.set_address_long(addr)
}
fn set_pan(&self, id: u16) {
self.mux.mac.set_pan(id)
}
fn config_commit(&self) {
self.mux.mac.config_commit()
}
fn is_on(&self) -> bool {
self.mux.mac.is_on()
}
fn prepare_data_frame(
&self,
buf: &'static mut [u8],
dst_pan: PanID,
dst_addr: MacAddress,
src_pan: PanID,
src_addr: MacAddress,
security_needed: Option<(SecurityLevel, KeyId)>,
) -> Result<framer::Frame, &'static mut [u8]> {
self.mux
.mac
.prepare_data_frame(buf, dst_pan, dst_addr, src_pan, src_addr, security_needed)
}
fn transmit(&self, frame: framer::Frame) -> Result<(), (ErrorCode, &'static mut [u8])> {
// If the muxer is idle, immediately transmit the frame, otherwise
// attempt to queue the transmission request. However, each MAC user can
// only have one pending transmission request, so if there already is a
// pending transmission then we must fail to entertain this one.
match self.operation.take() {
None => Err((ErrorCode::FAIL, frame.into_buf())),
Some(op) => match op {
Op::Idle => {
self.operation.replace(Op::Transmit(frame));
self.mux.do_next_op_sync(self).unwrap_or(Ok(()))
}
Op::Transmit(old_frame) => {
self.operation.replace(Op::Transmit(old_frame));
Err((ErrorCode::BUSY, frame.into_buf()))
}
},
}
}
}