1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.

//! Provides userspace applications with a driver interface to asynchronous GPIO
//! pins.
//!
//! Async GPIO pins are pins that exist on something like a GPIO extender or a
//! radio that has controllable GPIOs.
//!
//! Usage
//! -----
//!
//! ```rust,ignore
//! # use kernel::static_init;
//!
//! // Generate a list of ports to group into one userspace driver.
//! let async_gpio_ports = static_init!(
//!     [&'static capsules::mcp230xx::MCP230xx; 1],
//!     [mcp23008]);
//!
//! let gpio_async = static_init!(
//!     capsules::gpio_async::GPIOAsync<'static, capsules::mcp230xx::MCP230xx<'static>>,
//!     capsules::gpio_async::GPIOAsync::new(async_gpio_ports));
//!
//! // Setup the clients correctly.
//! for port in async_gpio_ports.iter() {
//!     port.set_client(gpio_async);
//! }
//! ```

use kernel::grant::{AllowRoCount, AllowRwCount, Grant, UpcallCount};
use kernel::hil;
use kernel::syscall::{CommandReturn, SyscallDriver};
use kernel::utilities::cells::OptionalCell;
use kernel::{ErrorCode, ProcessId};

/// Syscall driver number.
use capsules_core::driver;
pub const DRIVER_NUM: usize = driver::NUM::GpioAsync as usize;

pub struct GPIOAsync<'a, Port: hil::gpio_async::Port> {
    ports: &'a [&'a Port],
    grants: Grant<App, UpcallCount<2>, AllowRoCount<0>, AllowRwCount<0>>,
    /// **Transient** ownership of the partially virtualized peripheral.
    ///
    /// Current GPIO HIL semantics notify *all* processes of interrupts
    /// to any pin with interrupts configured (and it's left to higher
    /// layers to filter activity based on which pin generated their
    /// interrupt). For Async GPIO, this is awkward to virtualize, as
    /// there is no owning process of a pin for activity interrupts, but
    /// there is for configuration result interrupts. Also, the underlying
    /// hardware likely can't handle multiple concurrent configurations
    /// from multiple apps. Hence, this variable, which tracks a configuration
    /// while it is in flight and notifies the correct process that their
    /// configuration has succeeded. In the rare case where two apps attempt
    /// concurrent configuration requests, the later app will receive `EBUSY`.
    /// A retry loop should be sufficient for most apps to handle this rare
    /// case.
    configuring_process: OptionalCell<ProcessId>,
}

#[derive(Default)]
pub struct App {}

impl<'a, Port: hil::gpio_async::Port> GPIOAsync<'a, Port> {
    pub fn new(
        ports: &'a [&'a Port],
        grants: Grant<App, UpcallCount<2>, AllowRoCount<0>, AllowRwCount<0>>,
    ) -> GPIOAsync<'a, Port> {
        GPIOAsync {
            ports,
            grants,
            configuring_process: OptionalCell::empty(),
        }
    }

    fn configure_input_pin(&self, port: usize, pin: usize, config: usize) -> Result<(), ErrorCode> {
        let ports = self.ports;
        let mode = match config {
            0 => hil::gpio::FloatingState::PullNone,
            1 => hil::gpio::FloatingState::PullUp,
            2 => hil::gpio::FloatingState::PullDown,
            _ => return Err(ErrorCode::INVAL),
        };
        ports[port].make_input(pin, mode)
    }

    fn configure_interrupt(&self, port: usize, pin: usize, config: usize) -> Result<(), ErrorCode> {
        let ports = self.ports;
        let mode = match config {
            0 => hil::gpio::InterruptEdge::EitherEdge,
            1 => hil::gpio::InterruptEdge::RisingEdge,
            2 => hil::gpio::InterruptEdge::FallingEdge,
            _ => return Err(ErrorCode::INVAL),
        };
        ports[port].enable_interrupt(pin, mode)
    }
}

impl<Port: hil::gpio_async::Port> hil::gpio_async::Client for GPIOAsync<'_, Port> {
    fn fired(&self, pin: usize, identifier: usize) {
        // schedule callback with the pin number and value for all apps
        self.grants.each(|_, _app, upcalls| {
            upcalls.schedule_upcall(1, (identifier, pin, 0)).ok();
        });
    }

    fn done(&self, value: usize) {
        // alert currently configuring app
        self.configuring_process.map(|pid| {
            let _ = self.grants.enter(pid, |_app, upcalls| {
                upcalls.schedule_upcall(0, (0, value, 0)).ok();
            });
        });
        // then clear currently configuring app
        self.configuring_process.clear();
    }
}

impl<Port: hil::gpio_async::Port> SyscallDriver for GPIOAsync<'_, Port> {
    // Setup callbacks for gpio_async events.
    //
    // ### `subscribe_num`
    //
    // - `0`: Setup a callback for when **split-phase operations complete**.
    //   This callback gets called from the gpio_async `done()` event and
    //   signals the end of operations like asserting a GPIO pin or configuring
    //   an interrupt pin. The callback will be called with two valid
    //   arguments. The first is the callback type, which is currently 0 for
    //   all `done()` events. The second is a value, which is only useful for
    //   operations which should return something, like a GPIO read.
    // - `1`: Setup a callback for when a **GPIO interrupt** occurs. This
    //   callback will be called with two arguments, the first being the port
    //   number of the interrupting pin, and the second being the pin number.

    /// Configure and read GPIO pins.
    ///
    /// `pin` is the index of the pin.
    ///
    /// `data` is a 32 bit value packed with the lowest 16 bits as the port
    /// number, and the remaining upper bits as a command-specific value.
    ///
    /// ### `command_num`
    ///
    /// - `0`: Driver existence check.
    /// - `1`: Set a pin as an output.
    /// - `2`: Set a pin high by setting it to 1.
    /// - `3`: Clear a pin by setting it to 0.
    /// - `4`: Toggle a pin.
    /// - `5`: Set a pin as an input and configure its pull-up or pull-down
    ///   state. The command-specific field should be set to 0 for a pull-up, 1
    ///   for a pull-down, or 2 for neither.
    /// - `6`: Read a GPIO pin state, and have its value returned in the done()
    ///   callback.
    /// - `7`: Enable an interrupt on a GPIO pin. The command-specific data
    ///   should be 0 for an either-edge interrupt, 1 for a rising edge
    ///   interrupt, and 2 for a falling edge interrupt.
    /// - `8`: Disable an interrupt on a pin.
    /// - `9`: Disable a GPIO pin.
    /// - `10`: Get number of GPIO ports supported.
    fn command(
        &self,
        command_number: usize,
        pin: usize,
        data: usize,
        process_id: ProcessId,
    ) -> CommandReturn {
        let port = data & 0xFFFF;
        let other = (data >> 16) & 0xFFFF;
        let ports = self.ports;

        // Driver existence check.
        if command_number == 0 {
            CommandReturn::success();
        }

        // Special case command 10; everything else results in a process-owned,
        // split-phase call.
        if command_number == 10 {
            // How many ports
            return CommandReturn::success_u32(ports.len() as u32);
        }

        // On any command other than 0, we check for ports length.
        if port >= ports.len() {
            return CommandReturn::failure(ErrorCode::INVAL);
        }

        // On any command other than 0, we check if another command is in flight
        if self.configuring_process.is_some() {
            return CommandReturn::failure(ErrorCode::BUSY);
        };

        let res = match command_number {
            // enable output
            1 => ports[port].make_output(pin),

            // set pin
            2 => ports[port].set(pin),

            // clear pin
            3 => ports[port].clear(pin),

            // toggle pin
            4 => ports[port].toggle(pin),

            // enable and configure input
            5 => self.configure_input_pin(port, pin, other & 0xFF),

            // read input
            6 => ports[port].read(pin),

            // enable interrupt on pin
            7 => self.configure_interrupt(port, pin, other & 0xFF),

            // disable interrupt on pin
            8 => ports[port].disable_interrupt(pin),

            // disable pin
            9 => ports[port].disable(pin),

            // default
            _ => return CommandReturn::failure(ErrorCode::NOSUPPORT),
        };

        // If any async command kicked off, note that the peripheral is busy
        // and which process to return the command result to
        if res.is_ok() {
            self.configuring_process.set(process_id);
        }

        res.into()
    }

    fn allocate_grant(&self, processid: ProcessId) -> Result<(), kernel::process::Error> {
        self.grants.enter(processid, |_, _| {})
    }
}