capsules_core/spi_controller.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Provides userspace applications with the ability to communicate over the SPI
//! bus.
use core::cell::Cell;
use core::cmp;
use kernel::grant::{AllowRoCount, AllowRwCount, Grant, GrantKernelData, UpcallCount};
use kernel::hil::spi::ClockPhase;
use kernel::hil::spi::ClockPolarity;
use kernel::hil::spi::{SpiMasterClient, SpiMasterDevice};
use kernel::processbuffer::{ReadableProcessBuffer, WriteableProcessBuffer};
use kernel::syscall::{CommandReturn, SyscallDriver};
use kernel::utilities::cells::{MapCell, OptionalCell};
use kernel::utilities::leasable_buffer::SubSliceMut;
use kernel::{ErrorCode, ProcessId};
/// Syscall driver number.
use crate::driver;
pub const DRIVER_NUM: usize = driver::NUM::Spi as usize;
/// Ids for read-only allow buffers
mod ro_allow {
pub const WRITE: usize = 0;
/// The number of allow buffers the kernel stores for this grant
pub const COUNT: u8 = 1;
}
/// Ids for read-write allow buffers
mod rw_allow {
pub const READ: usize = 0;
/// The number of allow buffers the kernel stores for this grant
pub const COUNT: u8 = 1;
}
/// Suggested length for the Spi read and write buffer
pub const DEFAULT_READ_BUF_LENGTH: usize = 1024;
pub const DEFAULT_WRITE_BUF_LENGTH: usize = 1024;
// SPI operations are handled by coping into a kernel buffer for
// writes and copying out of a kernel buffer for reads.
//
// If the application buffer is larger than the kernel buffer,
// the driver issues multiple HAL operations. The len field
// of an application keeps track of the length of the desired
// operation, while the index variable keeps track of the
// index an ongoing operation is at in the buffers.
#[derive(Default)]
pub struct App {
len: usize,
index: usize,
}
pub struct Spi<'a, S: SpiMasterDevice<'a>> {
spi_master: &'a S,
busy: Cell<bool>,
kernel_read: MapCell<SubSliceMut<'static, u8>>,
kernel_write: MapCell<SubSliceMut<'static, u8>>,
kernel_len: Cell<usize>,
grants: Grant<
App,
UpcallCount<1>,
AllowRoCount<{ ro_allow::COUNT }>,
AllowRwCount<{ rw_allow::COUNT }>,
>,
current_process: OptionalCell<ProcessId>,
command: Cell<UserCommand>,
}
#[derive(Debug, Clone, Copy)]
enum UserCommand {
ReadBytes,
InplaceReadWriteBytes,
}
impl<'a, S: SpiMasterDevice<'a>> Spi<'a, S> {
pub fn new(
spi_master: &'a S,
grants: Grant<
App,
UpcallCount<1>,
AllowRoCount<{ ro_allow::COUNT }>,
AllowRwCount<{ rw_allow::COUNT }>,
>,
) -> Spi<'a, S> {
Spi {
spi_master,
busy: Cell::new(false),
kernel_len: Cell::new(0),
kernel_read: MapCell::empty(),
kernel_write: MapCell::empty(),
grants,
current_process: OptionalCell::empty(),
command: Cell::new(UserCommand::ReadBytes),
}
}
pub fn config_buffers(&self, read: &'static mut [u8], write: &'static mut [u8]) {
let len = cmp::min(read.len(), write.len());
self.kernel_len.set(len);
self.kernel_read.replace(read.into());
self.kernel_write.replace(write.into());
}
// Assumes checks for busy/etc. already done
// Updates app.index to be index + length of op
fn do_next_read_write(&self, app: &mut App, kernel_data: &GrantKernelData) {
let write_len = self.kernel_write.map_or(0, |kwbuf| {
let mut start = app.index;
let tmp_len = kernel_data
.get_readonly_processbuffer(ro_allow::WRITE)
.and_then(|write| {
write.enter(|src| {
let len = cmp::min(app.len - start, self.kernel_len.get());
let end = cmp::min(start + len, src.len());
start = cmp::min(start, end);
for (i, c) in src[start..end].iter().enumerate() {
kwbuf[i] = c.get();
}
end - start
})
})
.unwrap_or(0);
app.index = start + tmp_len;
tmp_len
});
let rlen = kernel_data
.get_readwrite_processbuffer(rw_allow::READ)
.map_or(0, |read| read.len());
// TODO verify SPI return value
let _ = if rlen == 0 {
let mut kwbuf = self
.kernel_write
.take()
.unwrap_or((&mut [] as &'static mut [u8]).into());
kwbuf.slice(0..write_len);
self.spi_master.read_write_bytes(kwbuf, None)
} else if write_len == 0 {
let read_len = self
.kernel_write
.map_or(0, |kwbuf| match self.command.get() {
UserCommand::ReadBytes => {
kwbuf[..].fill(0xFF);
cmp::min(kwbuf.len(), rlen)
}
UserCommand::InplaceReadWriteBytes => kernel_data
.get_readwrite_processbuffer(rw_allow::READ)
.and_then(|read| {
read.mut_enter(|src| {
let length = cmp::min(kwbuf.len(), rlen);
let start = app.index;
let end = cmp::min(app.index + length, src.len());
for (i, c) in src[start..end].iter().enumerate() {
kwbuf[i] = c.get();
}
length
})
})
.unwrap_or(0),
});
app.index += read_len;
let kwbuf = self
.kernel_write
.take()
.unwrap_or((&mut [] as &'static mut [u8]).into());
if let Some(mut krbuf) = self.kernel_read.take() {
krbuf.slice(0..read_len);
self.spi_master.read_write_bytes(kwbuf, Some(krbuf))
} else {
self.spi_master.read_write_bytes(kwbuf, None)
}
} else {
let mut kwbuf = self
.kernel_write
.take()
.unwrap_or((&mut [] as &'static mut [u8]).into());
kwbuf.slice(0..write_len);
self.spi_master
.read_write_bytes(kwbuf, self.kernel_read.take())
};
}
}
impl<'a, S: SpiMasterDevice<'a>> SyscallDriver for Spi<'a, S> {
// 0: driver existence check
// 2: read/write buffers
// - requires write buffer registered with allow
// - read buffer optional
// 3: set chip select
// - selects which peripheral (CS line) the SPI should
// activate
// - valid values are 0-3 for SAM4L
// - invalid value will result in CS 0
// 4: get chip select
// - returns current selected peripheral
// 5: set rate on current peripheral
// - parameter in bps
// 6: get rate on current peripheral
// - value in bps
// 7: set clock phase on current peripheral
// - 0 is sample leading
// - non-zero is sample trailing
// 8: get clock phase on current peripheral
// - 0 is sample leading
// - non-zero is sample trailing
// 9: set clock polarity on current peripheral
// - 0 is idle low
// - non-zero is idle high
// 10: get clock polarity on current peripheral
// - 0 is idle low
// - non-zero is idle high
// 11: read buffers
// - read buffer required
// 12: inplace read/write buffers
// - requires read buffer registered with allow
// - write buffer not supported
//
// x: lock spi
// - if you perform an operation without the lock,
// it implicitly acquires the lock before the
// operation and releases it after
// - while an app holds the lock no other app can issue
// operations on SPI (they are buffered)
// x+1: unlock spi
// - does nothing if lock not held
//
fn command(
&self,
command_num: usize,
arg1: usize,
_: usize,
process_id: ProcessId,
) -> CommandReturn {
if command_num == 0 {
// Handle unconditional driver existence check.
return CommandReturn::success();
}
// Check if this driver is free, or already dedicated to this process.
let match_or_empty_or_nonexistant = self.current_process.map_or(true, |current_process| {
self.grants
.enter(current_process, |_, _| current_process == process_id)
.unwrap_or(true)
});
if match_or_empty_or_nonexistant {
self.current_process.set(process_id);
} else {
return CommandReturn::failure(ErrorCode::NOMEM);
}
match command_num {
// No longer supported, wrap inside a read_write_bytes
1 => {
// read_write_byte
CommandReturn::failure(ErrorCode::NOSUPPORT)
}
2 => {
// read_write_bytes
if self.busy.get() {
return CommandReturn::failure(ErrorCode::BUSY);
}
self.grants
.enter(process_id, |app, kernel_data| {
// When we do a read/write, the read part is optional.
// So there are three cases:
// 1) Write and read buffers present: len is min of lengths
// 2) Only write buffer present: len is len of write
// 3) No write buffer present: no operation
let wlen = kernel_data
.get_readonly_processbuffer(ro_allow::WRITE)
.map_or(0, |write| write.len());
let rlen = kernel_data
.get_readwrite_processbuffer(rw_allow::READ)
.map_or(0, |read| read.len());
// Note that non-shared and 0-sized read buffers both report 0 as size
let len = if rlen == 0 { wlen } else { wlen.min(rlen) };
if len >= arg1 && arg1 > 0 {
app.len = arg1;
app.index = 0;
self.busy.set(true);
self.do_next_read_write(app, kernel_data);
CommandReturn::success()
} else {
/* write buffer too small, or zero length write */
CommandReturn::failure(ErrorCode::INVAL)
}
})
.unwrap_or(CommandReturn::failure(ErrorCode::FAIL))
}
3 => {
// set chip select
// XXX: TODO: do nothing, for now, until we fix interface
// so virtual instances can use multiple chip selects
CommandReturn::failure(ErrorCode::NOSUPPORT)
}
4 => {
// get chip select *
// XXX: We don't really know what chip select is being used
// since we can't set it. Return error until set chip select
// works.
CommandReturn::failure(ErrorCode::NOSUPPORT)
}
5 => {
// set baud rate
match self.spi_master.set_rate(arg1 as u32) {
Ok(()) => CommandReturn::success(),
Err(error) => CommandReturn::failure(error),
}
}
6 => {
// get baud rate
CommandReturn::success_u32(self.spi_master.get_rate())
}
7 => {
// set phase
match match arg1 {
0 => self.spi_master.set_phase(ClockPhase::SampleLeading),
_ => self.spi_master.set_phase(ClockPhase::SampleTrailing),
} {
Ok(()) => CommandReturn::success(),
Err(error) => CommandReturn::failure(error),
}
}
8 => {
// get phase
CommandReturn::success_u32(self.spi_master.get_phase() as u32)
}
9 => {
// set polarity
match match arg1 {
0 => self.spi_master.set_polarity(ClockPolarity::IdleLow),
_ => self.spi_master.set_polarity(ClockPolarity::IdleHigh),
} {
Ok(()) => CommandReturn::success(),
Err(error) => CommandReturn::failure(error),
}
}
10 => {
// get polarity
CommandReturn::success_u32(self.spi_master.get_polarity() as u32)
}
11 => {
// read_bytes
// write 0xFF to the SPI bus and return the read values to
// userspace
if self.busy.get() {
return CommandReturn::failure(ErrorCode::BUSY);
}
self.grants
.enter(process_id, |app, kernel_data| {
// When we do a read, we just write 0xFF on the bus.
let rlen = kernel_data
.get_readwrite_processbuffer(rw_allow::READ)
.map_or(0, |read| read.len());
if rlen >= arg1 && rlen > 0 {
app.len = arg1;
app.index = 0;
self.busy.set(true);
self.command.set(UserCommand::ReadBytes);
self.do_next_read_write(app, kernel_data);
CommandReturn::success()
} else {
/* write buffer too small, or zero length write */
CommandReturn::failure(ErrorCode::INVAL)
}
})
.unwrap_or(CommandReturn::failure(ErrorCode::FAIL))
}
12 => {
// inplace read_write_bytes
if self.busy.get() {
return CommandReturn::failure(ErrorCode::BUSY);
}
self.grants
.enter(process_id, |app, kernel_data| {
let rlen = kernel_data
.get_readwrite_processbuffer(rw_allow::READ)
.map_or(0, |read| read.len());
if rlen >= arg1 && arg1 > 0 {
app.len = arg1;
app.index = 0;
self.busy.set(true);
self.command.set(UserCommand::InplaceReadWriteBytes);
self.do_next_read_write(app, kernel_data);
CommandReturn::success()
} else {
/* write buffer too small, or zero length write */
CommandReturn::failure(ErrorCode::INVAL)
}
})
.unwrap_or(CommandReturn::failure(ErrorCode::FAIL))
}
_ => CommandReturn::failure(ErrorCode::NOSUPPORT),
}
}
fn allocate_grant(&self, processid: ProcessId) -> Result<(), kernel::process::Error> {
self.grants.enter(processid, |_, _| {})
}
}
impl<'a, S: SpiMasterDevice<'a>> SpiMasterClient for Spi<'a, S> {
fn read_write_done(
&self,
mut writebuf: SubSliceMut<'static, u8>,
readbuf: Option<SubSliceMut<'static, u8>>,
status: Result<usize, ErrorCode>,
) {
self.current_process.map(|process_id| {
let _ = self.grants.enter(process_id, move |app, kernel_data| {
let rbuf = readbuf.inspect(|src| {
let index = app.index;
let _ = kernel_data
.get_readwrite_processbuffer(rw_allow::READ)
.and_then(|read| {
read.mut_enter(|dest| {
// Need to be careful that app_read hasn't changed
// under us, so check all values against actual
// slice lengths.
//
// If app_read is shorter than before, and shorter
// than what we have read would require, then truncate.
// -pal 12/9/20
let end = index;
let start = index - status.unwrap_or(0);
let end = cmp::min(end, dest.len());
// If the new endpoint is earlier than our expected
// startpoint, we set the startpoint to be the same;
// This results in a zero-length operation. -pal 12/9/20
let start = cmp::min(start, end);
// The amount to copy can't be longer than the size of the
// read buffer. -pal 6/8/21
let real_len = cmp::min(end - start, src.len());
let dest_area = &dest[start..end];
for (i, c) in src[0..real_len].iter().enumerate() {
dest_area[i].set(*c);
}
})
});
});
if let Some(mut rb) = rbuf {
rb.reset();
self.kernel_read.put(rb);
}
writebuf.reset();
self.kernel_write.replace(writebuf);
if app.index == app.len {
self.busy.set(false);
let len = app.len;
app.len = 0;
app.index = 0;
kernel_data.schedule_upcall(0, (len, 0, 0)).ok();
} else {
self.do_next_read_write(app, kernel_data);
}
});
});
}
}